Prototype Facial Detection and Tracking System Using Digital Image Processing Assembled with A Mechanical Arm

Main Article Content

Pisanu Kumeechai
Jakrin Malairojsiri

Abstract

Face detection and tracking systems use digital image processing to analyse and identify human faces. This technology is widely applied in various fields such as security systems, personal tracking, and customer behaviour analysis. In the military, face tracking technology can be developed into an automatic targeting system by shifting the focus from general objects to human faces. When integrated with a gun turret control system, it becomes an efficient weapon. The system's operation starts with face detection using digital cameras to capture images, followed by image analysis software to locate and identify faces within frames and then track them. Once a face is detected, the centroid coordinates are sent to an Arduino robotic arm to track the face's movements within subsequent frames. The robotic arm adjusts its angle and position based on the information received from the system, targeting the human face. The experiment utilized four algorithms for face detection: the Viola-Jones algorithm, Dlib library, Convolutional Neural Networks (CNN), and Multi-task Cascaded Convolutional Networks (MTCNN). Performance measurement using a confusion matrix showed that the CNN algorithm had the highest efficiency, with a precision of 0.95, recall of 0.92, and F1 score of 0.93. Therefore, CNN is the most effective algorithm for face detection. The performance of the robotic arm combined with the face detection algorithms demonstrated that the CNN algorithm was the most accurate in identifying and tracking human faces, even in low light or complex environments. Testing the robotic arm's rotation at 45 and 135 degrees achieved an 82.5% success rate in face tracking.

Article Details

Section
Research Ariticles

References

Smith J, Johnson A. Robotic Arm Control for Shooting: Design and Implementation. Int J Robot Autom. 2020;15(2):45-62.

Brown R, Lee C. Face Tracking using Digital Image Processing: A Review of Algorithms and Applications. Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR). 2018:275-90.

Li H, Zhang L, Chen Y. Performance Evaluation of Face Detection Algorithms: A Comparative Study. J Image Process Comput Vis. 2019;27(3):112-30.

Johnson M, Davis R. Advanced Image Processing Techniques for Face Recognition and Tracking in Robotic Systems. IEEE Trans Robot. 2017;33(5):789-804.

Gonzalez R, Woods R, Eddins S. Digital Image Processing. Pearson Education; 2018.

Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. CVPR 2001: In Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. 2001 Dec 8(1); Kauai, HI, USA. [place unknown]: IEEE; 2001. p. I-I.

King DE. Dlib-ml: A machine learning toolkit. J Mach Learn Res [Internet]. 2009;10:1755-8. Available from:https://jmlr.org/papers/volume10/king09a/king09a.pdf

Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst [Internet]. 2012;25:1097-1105. Available from: https://proceedings.neurips.cc/paper_ files/paper/2012/file/c399862d3b9d6b76c8436e

a68c45b-Paper.pdf

Zhang K, Zhang Z, Li Z, Qiao Y. Joint face detection and alignment using multi-task cascaded convolutional networks. IEEE Signal Processing Letters [Internet]. 2016;23(10):1499-1503. Available from: https://arxiv.org/ pdf/1604.02878

National Institute of Standards and Technology (NIST). Face Recognition Vendor Test (FRVT) Part 3: Demographic Effects. NIST Interagency Report (NISTIR) 8280. 2019. Available from: https://nvlpubs.nist.gov /nistpubs/ir/2019/nist.ir.8280.pdf

Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. CVPR 2001: In Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. 2001 Dec 8(1); Kauai, HI, USA. [place unknown]: IEEE; 2001. p. I-I.

King DE. Dlib-ml: A machine learning toolkit. J Mach Learn Res [Internet]. 2009;10:1755-8. Available from: https://jmlr.org/papers/volume10/king09a/king09a.pdf

Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst [Internet]. 2012;25:1097-1105. Available from: https://proceedings.neurips.cc/ paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

Zhang K, Zhang Z, Li Z, Qiao Y. Joint face detection and alignment using multi-task cascaded convolutional networks. IEEE Signal Processing Letters [Internet]. 2016;23(10):1499-1503. Available from: https://arxiv.org/ pdf/1604.02878

พิศณุ คูมีชัย. การจำแนกและการติดตามเรือผิวน้ำด้วยระบบอัตโนมัติ. วารสารวิทยาศาสตร์และเทคโนโลยีนายเรืออากาศ (NKRAFA JOURNAL OF SCIENCE AND TECHNOLOGY). ก.ค. – ธ.ค. 2566;19(2):9–22.

Viola P, Jones MJ. Robust real-time face detection. International journal of computer vision [Internet]. 2004 May;57:137-54. Available from: https://www.face-rec.org/algorithms/Boosting-Ensemble/16981346.pdf

Ahonen T, Hadid A, Pietikäinen M. Face recognition with local binary patterns. IEEE Trans Pattern Anal Mach Intell [Internet]. 2006;28(12):2037-41. Available from: https://www.researchgate.net/publication/ 221304831_Face_Recognition_with_Local_Binary_Patterns

Agarwal A, Agrawal A. Robust face detection in challenging conditions using dlib library. Int J Comput Appl. 2019;160(1):26-32.

Sawhney S, Singh M, Gupta V. Face detection using dlib library and adaptive thresholding. 2019 International Conference on Intelligent Systems, Signal Processing and Applications (ISSPA). IEEE; 2019. p. 1-6.

Ren S, He K, Girshick R, Sun J. Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems [Internet]. 2015;28. Available from:https://arxiv.org/pdf/1506.01497

Redmon J, Divvala S, Girshick R, Farhadi A. You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 779-88.

Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC. Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Conference; 2016 October 11–14; Netherlands, Amsterdam. [place unknown]: Springer International Publishing; 2016. p. 21-37.

พิศณุ คูมีชัย. การตรวจจับใบหน้าบุคคลจาก 3 สภาวะแวดล้อมด้วย YOLOv4. วารสารวิทยาศาสตร์และเทคโนโลยี (THAI SCIENCE AND TECHNOLOGY JOURNAL). มี.ค – เม.ย. 2567;32(2):99-114.

Wang J, Wang L. Face Recognition: A Survey. IEEE Trans Syst Man Cybern C Appl Rev. 2013;43(3):401-22.