Implementation of Classification System for Buddha amulet using GLCM and Wavelet Transform and using Neural Network for Classify

Main Article Content

Anuchit Laongkum Laongkum
Pisanu Kumeechai

Abstract

The objective of this paper is to develop a system for extracting amulet information from digital images by using the neural network technique. In classify amulet images from digital cameras in controlled conditions such as distance control, distance between the camera and flowers Light intensity in photography etc. This paper focus on classify amulets of powdered material. The various properties used to extract the original image data are analyzed by the Gray-Level Co-Occurrence Matrices (GLCM) in order to collect the statistical values obtained from the analysis of the floor outline. This paper has tested the system using more than 40 powdered Buddha amulets with a total of more than 1,400 images, with data collected as a prototype of 800 images. The system uses 400 images of the same type and 200 images of Buddha images in different directions. This results in evaluating the efficiency of the system in terms of precision 72.12 %, recall 71.24 % F-measure 73.74 % and accuracy 90.80 %


Keywords : feature extraction, neural network, gray-level co-occurrence matrices, amulet

Article Details

Section
Research Ariticles

References

X. Zeng, W. Ouyang, J. Yan, H. Li, T. Xiao, K. Wang, & H. Zhou, “Crafting gbd-net for object detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence. 2018.

G. Niedbała, “Application of Artificial Neural Networks for Multi-Criteria Yield Prediction of Winter Rapeseed,” Sustainability, (2019), 11(2), 533.

K. Jha, A. Doshi, P. Patel, & M. Shah, “A comprehensive review on automation in agriculture using artificial intelligence,” Artificial Intelligence in Agriculture, (2019).

K. Liakos, P. Busato, D. Moshou, S. Pearson, & D. Bochtis, “Machine learning in agriculture: A review,” Sensors, (2018), 18(8), 2674.

A. Seema, & D. Rajeshwar, “Pattern recognition techniques: a review,” International Journal of Computer Science and Telecommunications, Volume 3, Issue 8, August 2012.

Suharjito, Imran B, Girsang A S. Family Relationship Identification by Using Extract Feature of Gray Level Co-occurrence Matrix (GLCM) Based on Parents and Children Fingerprint. International Journal of Electrical and Computer Engineering (IJECE). 2017; 7(5): 2738-2745.

Ozcan C, Ersoy O, Ogul IU. Classification of SAR image patches with Apache Spark using GLCM texture features.In: International Conference on Advanced Technologies 3rd World Conference on Big Data; Izmir, Turkey; 2018. pp. 1-7.

V.Gupta, R.Puri and M.Verma.“Prompt Indian Coin Recognition with Rotation Invariance using Image Subtraction Technique”. Electronics and Communication Engineering Department Thapar University, International Conference on Devices and Communications, IEEE, 2011

ชาตรี กอบัวแก้ว. การจำแนกพระผงโดยการเปรียบเทียบลักษณะพิเศษ.วิทยานิพยนธ์ปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิทยาการคอมพิวเตอร์ ภาควิชาคอมพิวเตอร์ บัณฑิตวิทยาลัย มหาวิทยาลัยศิลปากร, 2550.

Y.Mitsukura.“Design and Evaluation of Neural Networks for Coin Recognition by Using GA and SA”.Department of Information Science & Intelligent Systems, Faculty of Engineering University of Tokushima., The proceeding of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN2000), IEEE, July 2000, p.178-183.

ณัฐนันท์ ปรัชญาธิวัฒน์ การตรวจจับ ติดตาม และการแทรกภาพโฆษณาบนลำดับภาพกีฬาฟุตบอล. โครงงานวิทยาการคอมพิวเตอร์ปริญญาบัณฑิต สาขาวิทยาการคอมพิวเตอร์ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย, 2553.