Parametric Optimization for Dimensional Accuracy and Surface Roughness in Additive Manufactured Novel Acetabular Liner using Two Different Techniques

Main Article Content

J. Sofia
N. Ethiraj

Abstract

Fused Filament Fabrication (FFF), also known as Fused Deposition Modeling (FDM), is a widely utilized additive manufacturing technique. By fine-tuning process parameters, improvements in product quality can be achieved. This study investigates optimizing parameters: print speed, layer height, and infill density in fabricating acetabular liners, a component of hip implants using FFF. Four decision-making methods namely the Analytic Hierarchy Process (AHP) combined with Technique for Order of Preference by Similarity to Ideal Solution (AHP-TOPSIS), Entropy Weight Method (EWM)-TOPSIS, AHP-Multi-Objective Optimization on the basis of Ratio Analysis (MOORA), and EWM-MOORA) are compared to identify the most suitable parameter settings. Observations from Experiments are used in each method. The research evaluates these methods to determine the optimal FFF parameters and the results will help to improve the 3D Printing process through informed parameter selection.

Article Details

How to Cite
J. Sofia, & N. Ethiraj. (2024). Parametric Optimization for Dimensional Accuracy and Surface Roughness in Additive Manufactured Novel Acetabular Liner using Two Different Techniques. Journal of Research and Applications in Mechanical Engineering, 13(1), JRAME–25. retrieved from https://ph01.tci-thaijo.org/index.php/jrame/article/view/257397
Section
RESEARCH ARTICLES
Author Biography

J. Sofia, Department of Mechanical Engineering, Dr.M.G..R Educational and Research Institute, Maduravoyal, Chennai-600095, India

 

 

References

Gade S, Vagge S, Rathod M. A review on additive manufacturing – methods, materials, and its associated failures. Adv Sci Technol Res J. 2023;17(3):40-63.

Monfared V, Ramakrishna S, Nasajpour-Esfahani N, Toghraie D, Hekmatifar M, Rahmati S. Science and technology of additive manufacturing progress: processes, materials, and applications. Met Mater Int. 2023;29(12):3442-3470.

Montez M, Willis K, Rendler H, Marshall C, Rubio E, Rajak DK, et al. Fused deposition modeling (FDM): processes, material properties, and applications. In: Kumar P, Misra M, Menezes PL, editors. Tribology and Surface Engineering, Tribology of Additively Manufactured Materials. Amsterdam: Elsevier, 2022. p. 137-163.

Sofia J, Ethiraj N, Nikolova MP. Preliminary study on the additively manufactured plastic liner of an acetabular cup component. Jurnal Teknologi. 2022;84(2):113-120.

Sofia J, Ethiraj N, Nikolova MP. A novel method of fabricating multi‐material acetabular liner using fused filament fabrication. Polym Eng Sci. 2023;63(12):4140-4152.

Ingle S, Raut D. Evaluation of tool wears mechanism considering machining parameters and performance parameters for titanium alloy in turning operation on CNC. Adv Mater Process Technol. 2024;10(3):1380-1400.

Koli Y, Yuvaraj N, Aravindan S, Vipin. Multi-Response mathematical model for optimization of process parameters in CMT welding of dissimilar thickness AA6061-T6 and AA6082-T6 alloys Using RSM-GRA coupled with PCA. Adv Ind Manuf Eng. 2021;2:100050.

Meikeerthy S, Ethiraj N. Multi response optimization of friction stir welding in air and water by analytic hierarchy process and VIKOR method. Scientia Iranica. 2024;31(4):346-357.

Rao PV, Pawar PJ, Shankar R. Multi-objective optimization of electrochemical machining process parameters using a particle swarm optimization algorithm. Proc Inst Mech Eng Part B: J Eng Manuf. 2008;222(8):949-958.

Rakhade RD, Patil NV, Pardeshi MR, Patil BG. Selection of 3D printer for innovation centre of academic institution based on AHP and TOPSIS methods. Int J Res Appl Sci Eng Technol. 2021;9(12):1872-1880.

Al Theeb N, Abu Qdais H, Abu Qdais FH, Habibah O. Utilizing AHP-TOPSIS as multi-criteria decision approaches to select the best alternative for waste to energy technology. Jordan J Mech Ind Eng. 2022;16(4):601-613.

Ccatamayo-Barrios JH, Huamán-Romaní YL, Seminario-Morales MV, Flores-Castillo MM, Gutiérrez-Gómez E, Carrillo-De la cruz LK, et al. Comparative analysis of AHP and TOPSIS multi-criteria decision-making methods for mining method selection. Math Model Eng Probl. 2023;10(5):1665-1674.

Li X, Wang K, Liu, L Xin J, Yang H, Gao C. Application of the entropy weight and TOPSIS method in safety evaluation of coal mines. Procedia Eng. 2011;26:2085-2091.

Zhao DY, Ma YY, Lin HL. Using the entropy and TOPSIS models to evaluate sustainable development of islands: a case in china. Sustainability. 2022;14(6):3707.

Zhang Y. TOPSIS method based on entropy weight for supplier evaluation of power grid enterprise. Proceedings of the 2015 International Conference on Education Reform and Modern Management; 2015 Apr 19-20; Hong Kong. Amsterdam: Atlantis Press; 2015. p. 334-337.

Zhu Y, Tian D, Yan F. Effectiveness of entropy weight method in decision-making. Math Probl Eng. 2020;2020:1-5.

Sahu AK, Mahapatra SS, Chatterjee S, Thomas J. Optimization of surface roughness by MOORA method in EDM by electrode prepared via selective laser sintering process. Mater Today: Proc. 2018;5(9):19019-19026.

Paul A, Das MC. A decision support system for the selection of FDM process parameters using MOORA. Manag Sci Lett. 2024;14:181-188.

Shihab SK, Khan NZ, Myla P, Upadhyay S, Khan ZA, Siddiquee AN. Application of MOORA method for multi optimization of GMAW process parameters in stain-less steel cladding. Manag Sci Lett. 2018;8:241-246.

Syed MAB, Rahman Q, Shahriar HM, Khan MMA. Grey Taguchi approach to optimize Fused Deposition Modeling process in terms of mechanical properties and dimensional accuracy. J Eng Res Innov Educ. 2022;4(1):38-52.

Yang L, Li S, Li Y, Yang M, Yuan Q. Experimental investigations for optimizing the extrusion parameters on FDM PLA printed parts. J Mater Eng Perform. 2019;28(1):169-182.

Ganapathy SB, Sakthivel AR, Kandasamy J, Khan T, Aloufi M. Optimization of printing process variables and the effect of post-heat treatments on the mechanical properties of extruded polylactic acid–aluminum composites. Polymers. 2023;15(24):4698.

Kónya G. Investigating the impact of productivity on surface roughness and dimensional accuracy in FDM 3D printing. Period Polytech Transp Eng. 2024;52(2):128-133.

Fountas N, Kechagias J, Vaxevanidis N. Statistical modeling and optimization of surface roughness for PLA and PLA/wood FDM fabricated items. J Mater Eng. 2023;1(1):38-44.

Mohanty A, Nag KS, Bagal DK, Barua A, Jeet S, Mahapatra SS, et al. Parametric optimization of parameters affecting dimension precision of FDM printed part using hybrid taguchi-MARCOS-nature inspired heuristic optimization technique. Mater Today: Proc. 2022;50:893-903.

Begovic E, Plancic I, Ekinovic S, Sarajlic A. FDM 3D printing process parameters optimization using taguchi method for improving the gear strength. Int J Adv Res. 2022;10(3):782-788.

Tura AD, Mamo HB. Characterization and parametric optimization of additive manufacturing process for enhancing mechanical properties. Heliyon. 2022;8(7):e09832.

Shirmohammadi M, Goushchi SJ, Keshtiban PM. Optimization of 3D printing process parameters to minimize surface roughness with hybrid artificial neural network model and particle swarm algorithm. Prog Addit Manuf. 2021;6(2):199-215.

Hasdiansah H, Yaqin RI, Pristiansyah P, Umar ML, Priyambodo BH. FDM-3D printing parameter optimization using taguchi approach on surface roughness of thermoplastic polyurethane parts. Int J Interact Des Manuf. 2023;17(6):3011-3024.

Tuncel O. Optimization of specific compression strength of abs samples produced with FDM by taguchi method. The 5th International Conference of Materials and Engineering Technology; 2023 Nov 13-16; Trabzon, Turkey. p. 120-129.

Chohan JS, Kumar R, Singh TB, Singh S, Sharma S, Singh J, et al. Taguchi S/N and TOPSIS based optimization of fused deposition modelling and vapor finishing process for manufacturing of ABS plastic parts. Materials. 2020;13(22):5176.

Morvayová A, Contuzzi N, Fabbiano L, Casalino G. Multi-attribute decision making: parametric optimization and modeling of the FDM manufacturing process using PLA/wood biocomposites. Materials. 2024;17(4):924.