Comparative Performance of Meta-Heuristic Algorithms for Low-Speed Wind Turbine Blade Structural Optimization
Main Article Content
Abstract
The comparative assessment of recent Metaheuristics (MHs) optimization techniques was conducted within the context of low-speed wind turbine (LS-WT) blade design, with a focus on simultaneously addressing aerodynamic and structural considerations. The study encompasses two LS-WT design problems: the first aims to minimize wind turbine (WT) mass, while the second employs a weighted sum technique to simultaneously minimize WT mass and maximize turbine power. A comparative study on the performance of several recent MHs on the LS-WT problems has been conducted. The optimal design of the WT in the second problem exhibits greater dimensions compared to the shape in the first problem. The WT mass in the second problem is approximately 21 percent higher than in the first problem, reflecting the higher power output achieved in the second problem is more than 5.7 percent compared to the first problem. Statistical analysis of fitness values revealed that L-SHADE exhibited superior performance in terms of both average fitness and standard deviation compared to other algorithms.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Arivalagan S, Sappani R, Čep R, Kumar MS. Optimization and experimental investigation of 3D printed micro wind turbine blade made of PLA material. Materials 2023;16(6):2508.
Amjith LR, Bavanish B. Optimization of horizontal axis wind turbine blade using FEA. Mater Today: Proc. 2021;37:3367-3371.
Alkhabbaz A, Yang HS, Weerakoon AHS, Lee YH. A novel linearization approach of chord and twist angle distribution for 10 kW horizontal axis wind turbine. Renew Energy. 2021;178:1398-1420.
Albanesi AE, Peralta I, Bre F, Storti BA, Fachinotti VD. An optimization method based on the evolutionary and topology approaches to reduce the mass of composite wind turbine blades. Struct Multidisc Optim. 2020;62:619-643.
Castro O, Belloni F, Stolpe M, Yeniceli SC, Berring P, Branner K. Optimized method for multi-axial fatigue testing of wind turbine blades. Compos Struct. 2021;257:113358.
Yang K. Geometry design optimization of a wind turbine blade considering effects on aerodynamic performance by linearization. Energies 2020;13(9):2320.
Rodriguez CV, Celis C. Design optimization methodology of small horizontal axis wind turbine blades using a hybrid CFD/BEM/GA approach. J Braz Soc Mech Sci Eng. 2022;44:254.
Mitchell M. An introduction to genetic algorithms. Cambridge: MIT Press; 1998.
Pourrajabian A, Dehghan M, Rahgozar S. Genetic algorithms for the design and optimization of horizontal axis wind turbine (HAWT) blades: a continuous approach or a binary one?. Sustain Energy Technol Assess. 2021;44:101022.
Karaboga D. Artificial bee colony algorithm. Scholarpedia. 2010;5(3):6915.
Zhu J, Cai X, Ma D, Zhang J, Ni X. Improved structural design of wind turbine blade based on topology and size optimization. Int J Low-Carbon Technol. 2022;17:69-79.
Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks; 1995 Nov 27 - Dec 1; Perth, Australia. USA: IEEE; 1995. p. 1942-1948.
Tanabe R, Fukunaga A. Evaluating the performance of SHADE on CEC 2013 benchmark problems. 2013 IEEE Congress on Evolutionary Computation; 2013 Jun 20-23; Cancun, Mexico. USA: IEEE; 2013. p. 1952-1959.
Tanabe R, Fukunaga A. Success-history based parameter adaptation for differential evolution. 2013 IEEE Congress on Evolutionary Computation; 2013 Jun 20-23; Cancun, Mexico. USA: IEEE; 2013. p. 71-78.
Tanabe R, Fukunaga AS. Improving the search performance of SHADE using linear population size reduction. 2014 IEEE Congress on Evolutionary Computation (CEC); 2014 Jul 6-11; Beijing, China. USA: IEEE; 2014. p. 1658-1665.
Piotrowski AP. L-SHADE optimization algorithms with population-wide inertia. Inf Sci. 2018;468:117-141.
The MathWorks Inc. Chinese Pangolin Optimizer (CPO) [Internet]. 2024 [cited 2024 Feb 24]. Available from: https://www.mathworks.com/matlabcentral/fileexchange/157086-chinese-pangolin-optimizer-cpo.
Zhao W, Wang L, Zhang Z, Fan H, Zhang J, Mirjalili S, et al. Electric eel foraging optimization: a new bio-inspired optimizer for engineering applications. Expert Syst Appl. 2024;238:122200.
Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH. Marine Predators Algorithm: a nature-inspired metaheuristic. Expert Syst Appl. 2020;152:113377.
Zhao W, Wang L, Zhang Z, Mirjalili S, Khodadadi N, Ge Q. Quadratic Interpolation Optimization (QIO): a new optimization algorithm based on generalized quadratic interpolation and its applications to real-world engineering problems. Comput Methods Appl Mech Eng. 2023;417:116446.
Akbari V, Naghashzadegan M, Kouhikamali R, Afsharpanah F, Yaïci W. Multi-objective optimization and optimal airfoil blade selection for a small Horizontal-Axis Wind Turbine (HAWT) for application in regions with various wind potential. Machines. 2022;10(8):687.
Yang S, Lee S, Yee K. Inverse design optimization framework via a two-step deep learning approach: application to a wind turbine airfoil. Eng Comput. 2023;39:2239-2255.
Özkan R, Genç MS. Aerodynamic design and optimization of a small-scale wind turbine blade using a novel artificial bee colony algorithm based on blade element momentum (ABC-BEM) theory. Energy Convers Manage. 2023;283:116937.
Ning A. Using blade element momentum methods with gradient-based design optimization. Struct Multidisc Optim. 2021;64:991-1014.
Sagimbayev S, Kylyshbek Y, Batay S, Zhao Y, Fok S, Soo Lee T. 3D multidisciplinary automated design optimization toolbox for wind turbine blades. Processes. 2021;9(4):581.
Yirtici O, Tuncer IH. Aerodynamic shape optimization of wind turbine blades for minimizing power production losses due to icing. Cold Reg Sci Technol. 2021;185:103250.
Lee SL, Shin SJ. Structural design optimization of a wind turbine blade using the genetic algorithm. Eng Optim. 2022;54(12):2053-2070.
Serafeim GP, Manolas DI, Riziotis VA, Chaviaropoulos PK, Saravanos DA. Optimized blade mass reduction of a 10MW-scale wind turbine via combined application of passive control techniques based on flap-edge and bend-twist coupling effects. J Wind Eng Ind Aerodyn. 2022;225:105002.
Hayat K, Siddique S, Sultan T, Ali HT, Aloufi FA, Halawani RF. Effect of spar design optimization on the mass and cost of a large-scale composite wind turbine blade. Energies. 2022;15(15):5612.
Wang Z, Suiker ASJ, Hofmeyer H, van Hooff T, Blocken B. Coupled aerostructural shape and topology optimization of horizontal-axis wind turbine rotor blades. Energy Convers Manage. 2020;212:112621.
Thapa M, Missoum S. Surrogate-based stochastic optimization of horizontal-axis wind turbine composite blades. Struct Multidisc Optim. 2022;65:41.
Belfkira Z, Mounir H, El Marjani A. Structural optimization of a horizontal axis wind turbine blade made from new hybrid composites with kenaf fibers. Compos Struct. 2021;260:113252.
Özkan R, Genç MS. Multi-objective structural optimization of a wind turbine blade using NSGA-II algorithm and FSI. Aircr Eng Aerosp Technol. 2021;93(6):1029-1042.
Yao S, Chetan M, Griffith DT, Escalera Mendoza AS, Selig MS, Martin D, et al. Aero-structural design and optimization of 50 MW wind turbine with over 250-m blades. Wind Eng. 2022;46(1):273-295.
Al-Abadi A, Ertunç Ö, Beyer F, Delgado A. Torque-matched aerodynamic shape optimization of HAWT rotor. J Phys: Conf Ser. 2014;555:012003.
Mahmuddin F. Rotor blade performance analysis with blade element momentum theory. Energy Procedia. 2017;105:1123-1129.
El Khchine Y, Sriti M. Improved Blade Element Momentum theory (BEM) for predicting the aerodynamic performances of Horizontal Axis Wind Turbine Blade (HAWT). Technische Mechanik. 2018;38(2):191-202.
Moriarty PJ, Hansen AC. AeroDyn theory manual. Technical report. USA: National Renewable Energy Lab; 2005. Report no.: NREL/TP-500-36881.
University of Cambridge. Failure of laminates and the Tsai–Hill criterion [Internet]. 2023 [cited 2023 Nov 7]. Available from: https://www.doitpoms.ac.uk/tlplib/fibre_composites/laminate_failure.php.
Cifuentes AO. Using MSC/NASTRAN: statics and dynamics. New York: Springer-Verlag; 2012.
Leipholz H, Hutchinson JW. Theory of elasticity. J Appl Mech. 1975;42(4):911.
Qiu Z, Li X. A new model for the eigenvalue buckling analysis with unknown-but-bounded parameters. Aerosp Sci Technol. 2021;113:106634.
Hu W, Park D, Choi D. Structural optimization procedure of a composite wind turbine blade for reducing both material cost and blade weight. Eng Optim. 2013;45(2):1469-1487.
Jureczko M, Mrówka M. Multiobjective optimization of composite wind turbine blade. Materials. 2022;15(13):4649.
Wang R, Zhou Z, Ishibuchi H, Liao T, Zhang T. Localized weighted sum method for many-objective optimization. IEEE Trans Evol Comput. 2018;22(1):3-18.
Storn R, Price K. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim. 1997;11:341-359.