A comprehensive review on the rheological characteristics of printing ink

Main Article Content

E. Hosseini

Abstract

Generally, printing inks are important due to its application in wide fields including printing of books, journals, and newspapers. Furthermore, printing inks are used to provide information about the produced goods. Understanding the rheology and the potential to evaluate the rheological characteristics is necessary for controlling rheology, and control is essential for the production and handling of many materials especially inks. Hence, the aim of this study is mainly a review based on the rheological properties of printing inks, the effect of viscosity on ink, thixotropic and shear-thinning behaviors of ink as well as considering the past works on screen-printing inks for the production of the solid oxide fuel cell (SOFC) films.

Article Details

How to Cite
Hosseini, E. (2020). A comprehensive review on the rheological characteristics of printing ink. Journal of Research and Applications in Mechanical Engineering, 8(2), 171–179. Retrieved from https://ph01.tci-thaijo.org/index.php/jrame/article/view/240749
Section
RESEARCH ARTICLES

References

Bhow, N.R., and Payne, H.F. Styrene copolymers in alkyd resins, Industrial & Engineering Chemistry, Vol. 42(4), 1950, pp. 700-703.

Schoff, C.K. and Kamarchik, P. Rheological measurements, Kirk‐Othmer Encyclopedia of Chemical Technology, 1997, Wiley, New York.

Batchelor, G.K. An introduction to fluid dynamics, 1967, Cambridge University Press, Cambridge.

Eirich, F. Rheology V2: Theory and applications, 2012, Academic Press, United States.

Yang, L. and Du, K. A comprehensive review on the natural, forced, and mixed convection of Non-Newtonian fluids (nanofluids) inside different cavities, Journal of Thermal Analysis and Calorimetry, Vol. 140(1), 2020, pp. 2033-2054.

Al-Hamde, M. Rheology of screen printing ink, Dissertations, 2004, Al-Nahrain University, Iraq.

Da silva, J.L. and Rao, M.A. Rheological behavior of food gels, Rheology of fluid and semisolid foods, 2007, Springer, United States.

Khan, Z.H., Khan, W.A. and Hamid, M. Non-Newtonian fluid flow around a Y-shaped fin embedded in a square cavity, Journal of Thermal Analysis and Calorimetry, 2020, pp.1-13.

Somalu, M. R. and Brandon, N.P. Rheological studies of nickel/scandia‐stabilized‐zirconia screen printing inks for solid oxide fuel cell anode fabrication, Journal of the American Ceramic Society, Vol. 95(4), 2012, pp. 1220-1228.

Zhou, X., Deng, J., Fang, C., Yu, R., Lei, W., He, X., et al. Preparation and characterization of lysozyme@ carbon nanotubes/waterborne polyurethane composite and the potential application in printing inks, Progress in Organic Coatings, Vol. 142, 2020, 105600.

Von Dollen, P. and Barnett, S. A study of screen printed Yttria‐Stabilized zirconia layers for solid oxide fuel cells, Journal of the American Ceramic Society, Vol. 88(12), 2005, pp. 3361-3368.

Jou, S. and Wu, T. Thin porous Ni–YSZ films as anodes for a solid oxide fuel cell, Journal of Physics and Chemistry of Solids, Vol. 69(11), 2008, pp. 2804-2812.

Hildenbrand, N., Nammensma, P., Blank, D.H., Bouwmeester, H.J. and Boukamp, B.A. Influence of configuration and microstructure on performance of La2NiO4+ δ intermediate-temperature solid oxide fuel cells cathodes, Journal of power sources, Vol. 238(1), 2013, pp. 442-453.

Fu, C., Chan, S.H., Liu, Q., Ge, X. and Pasciak, G. Fabrication and evaluation of Ni-GDC composite anode prepared by aqueous-based tape casting method for low-temperature solid oxide fuel cell, International Journal of Hydrogen Energy, Vol. 35(1), 2010, pp. 301-307.

Maric, R., Neagu, R., Zhang-Steenwinkel, Y., Van Berkel, F.P. and Rietveld, B. Reactive spray deposition technology one-step deposition technique for solid oxide fuel cell barrier layers, Journal of Power Sources, Vol. 195(24), 2010, pp. 8198-8201.

Durango-Petro, J., Usuba, J., Valle, H., Abarzua, G., Flies, H., Udayabhaskar, R., et al. Ascendable method for the fabrication of micro-tubular solid oxide fuel cells by ram-extrusion technique, Ceramics International, Vol. 46(3), 2020, pp. 2602-2611.

Li, G. and Ren., R. Preparation of YSZ-TZP solid electrolytes by gel-casting technology, Journal of Environmental Sciences, Vol. 23(2), 2011, pp. S170-S172.

Liu, Y., Tang, Y., Ding, J. and Liu, J. Electrochemical performance of cone-shaped anode-supported segmented-in-series SOFCs fabricated by gel-casting technique, International Journal of Hydrogen Energy, Vol. 37(1), 2012, pp. 921-925.

Navarro, M.E., Capdevila, X.G., Morales, M., Roa, J.J. and Segarra, M. Manufacturing of anode-supported tubular solid oxide fuel cells by a new shaping technique using aqueous gel-casting, Journal of Power Sources, Vol. 200(1), 2012, pp. 45-52.

Han, F., Van Gestel, T., Mücke, R. and Buchkremer, H.P. Development of nano-structured YSZ electrolyte layers for SOFC application via sol-gel route, Ceramic Transaction, Vol. 210(1), 2010, pp.165-171.

Macedo, D.A., Figueiredo, F.M., Paskocimas, C.A., Martinelli, A.E., Nascimento, R.M. and Marques, F.M. Ni–CGO cermet anodes from nanocomposite powders: Microstructural and electrochemical assessment, Ceramics International, Vol. 40(8), 2014, pp. 13105-13113.

Erilin, I.S., Agarkov, D.A., Burmistrov, I.N., Pukha, V.E., Yalovenko, D.V., Lyskov, N.V., et al. Aerosol deposition of thin-film solid electrolyte membranes for anode-supported solid oxide fuel cells, Materials Letters, Vol. 266, 2020, 127439.

Haldane, M. and Etsell. T. Fabrication of composite SOFC anodes using polarized electrochemical vapor deposition, Fuel Cells Bulletin, Vol. 2005(7), 2005, pp. 12-16.

Ferlauto, A.S., De Florio, D.Z., Fonseca, F.C., Esposito, V., Muccillo, R., Traversa, E., et al. Chemical vapor deposition of multi-walled carbon nanotubes from nickel/yttria-stabilized zirconia catalysts, Applied Physics A, Vol. 84(3), 2006, pp. 271-276.

Liu, Y., Zha, S. and Liu, M. Novel nanostructured electrodes for solid oxide fuel cells fabricated by combustion chemical vapor deposition (CVD), Advanced Materials, Vol. 16(3), 2004, pp. 256-260.

Uhlenbruck, S., Jordan, N., Serra, J.M., Buchkremer, H.P. and Stöver, D. Application of electrolyte layers for solid oxide fuel cells by electron beam evaporation, Solid State Ionics, Vol. 181(8-10), 2010, pp. 447-452.

Meng, B., He, X. D., Sun, Y. and Li, M.W. Preparation of porous Ni–YSZ coatings by EB–PVD, Materials Science and Technology, Vol. 25(1), 2009, pp. 117-120.

Nédélec, R., Uhlenbruck, S., Sebold, D., Haanappel, V.A., Buchkremer, H.P. and Stöver, D. Dense yttria-stabilised zirconia electrolyte layers for SOFC by reactive magnetron sputtering, Journal of Power Sources, Vol. 205(1), 2012, pp. 157-163.

Ferguson, J. and Kemblowski, Z. Applied fluid rheology, 1991, Springer, United States.

Bassemir, R.W., Bean, A., Wasilewski, O., Kline, D., Hillis, W., Su, C., et al. Inks, Kirk‐Othmer Encyclopedia of Chemical Technology, 2004, Wiley, New York.

Sherman, P. Industrial rheology with particular reference to foods, pharmaceuticals, and cosmetics, 1970, Academic Press, New York.

Phair, J.W., Lundberg, M. and Kaiser, A. Leveling and thixotropic characteristics of concentrated zirconia inks for screen-printing, Rheologica acta, Vol. 48(2), 2009, pp. 121-133.

Patton, T.C. Paint flow and pigment dispersion: a rheological approach to coating and ink technology, 1979, Wiley, New York.

Harris, J. Rheology and non-Newtonian flow, 1977, Longman Publishing, United Kingdom.

Schowalter, W.R. Mechanics of non-Newtonian fluids, 1978, Pergamon press, Oxford.

Rune, E. Measuring instrument of the recording type, U.S. Patent No. 2566443, 1951, United States.

Gupta, R.K. Polymer and composite rheology, 2000, CRC Press, United States.

Van Wazer, J.R. Viscosity and flow measurement: a laboratory handbook of rheology, 1963, Interscience Publishers, United States.

Wilkinson, W.L. Non-Newtonian fluids: fluid mechanics, mixing and heat transfer, 1960, Pergamon Press, London.

Tseng, W.J. and Lin, K. Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions, Materials science and engineering, Vol. 355(1-2), 2003, pp. 186-192.

Somalu, M.R., Yufit, V. and Brandon, N.P. The effect of solids loading on the screen-printing and properties of nickel/scandia-stabilized-zirconia anodes for solid oxide fuel cells, International Journal of Hydrogen Energy, Vol. 38(22), 2013, pp. 9500-9510.

Mallik, S., Schmidt, M., Bauer, R. and Ekere, N.N. Influence of solder paste components on rheological behaviour, paper presented in the Electronics System-Integration Technology Conference, 2008, Greenwich, United Kingdom.

Ried, P., Lorenz, C., Brönstrup, A., Graule, T., Menzler, N.H., Sitte, W., et al. Processing of YSZ screen printing pastes and the characterization of the electrolyte layers for anode supported SOFC, Journal of the European Ceramic Society, Vol. 28(9), 2008, pp. 1801-1808.

Marani, D., Gadea, C., Hjelm, J., Hjalmarsson, P., Wandel, M. and Kiebach, R. Influence of hydroxyl content of binders on rheological properties of cerium–gadolinium oxide (CGO) screen printing inks, Journal of the European Ceramic Society, Vol. 35(5), 2015, pp. 1495-1504.

Sanson, A., Roncari, E., Boldrini, S., Mangifesta, P. and Doubova, L. Eco-friendly screen-printing inks of gadolinia doped ceria, Journal of Fuel Cell Science and Technology, Vol. 7(5), 2010, 051013.

Green, D.W. and Southard, M.Z. Perry’s chemical engineers' handbook, 2018, McGraw Hill, United States.

Somalu, M.R., Muchtar, A., Daud, W.R.W. and Brandon, N.P. Scree

n-printing inks for the fabrication of solid oxide fuel cell films: a review, Renewable and Sustainable Energy Reviews, Vol. 75(1), 2017, pp. 426-439.

Trease, R.E. and Dietz, R.L. Rheology of pastes in thick-film printing, Solid state technology, Vol. 15(1), 1972, pp. 39-51.

Thibert, S., Jourdan, J., Bechevet, B., Chaussy, D., Reverdy-Bruas, N. and Beneventi, D. Influence of silver paste rheology and screen parameters on the front side metallization of silicon solar cell, Materials science in semiconductor processing, Vol. 27(1), 2014, pp. 790-799.

Li, H., Xie, Z., Zhang, Y. and Wang, J. The effects of ethyl cellulose on PV performance of DSSC made of nanostructured ZnO pastes, Thin Solid Films, Vol. 518(24), 2010, pp. 68-71.

Ismail, B., Abaab, M. and Rezig, B. Structural and electrical properties of ZnO films prepared by screen printing technique, Thin Solid Films, Vol. 383(1), 2001, pp. 92-94.

Hasan, K., Nur, O. and Willander, M. Screen printed ZnO ultraviolet photoconductive sensor on pencil drawn circuitry over paper, Applied Physics Letters, Vol. 100(21), 2012, 211104.

Burnat D., Ried P., Holtappels P., Heel A., Graule T. and Kata D. The rheology of stabilized lanthanum strontium cobaltite ferrite nanopowders in organic medium applicable as screen printed SOFC cathode layers, Fuel Cells, Vol. 10(1), 2010, 156e65.

Rotureau, D., Viricelle, J.P., Pijolat, C., Caillol, N. and Pijolat, M. Development of a planar SOFC device using screen-printing technology, Journal of the European Ceramic Society, Vol. 25(12), 2005, pp. 2633-2636.

Somalu, M.R., Yufit, V., Shapiro, I.P., Xiao, P. and Brandon, N.P. The impact of ink rheology on the properties of screen-printed solid oxide fuel cell anodes, International Journal of Hydrogen Energy, Vol. 38(16), 2013, pp. 6789-6801.

Somalu, M.R., Yufit, V., Cumming, D., Lorente, E. and Brandon, N.P. Fabrication and characterization of Ni/ScSZ cermet anodes for IT-SOFCs, International Journal of Hydrogen Energy, Vol. 36(9), 2011, pp. 5557-5566.

Eguchi, K., Tanaka, K., Matsui, T. and Kikuchi, R. Reforming activity and carbon deposition on cermet catalysts for fuel electrodes of solid oxide fuel cells, Catalysis Today, Vol. 146(1), 2009, pp. 154-159.

Ke, K., Gunji, A., Mori, H., Tsuchida, S., Takahashi, H., Ukai, K., et al. Effect of oxide on carbon deposition behavior of CH 4 fuel on Ni/ScSZ cermet anode in high temperature SOFCs, Solid State Ionics, Vol. 177(5), 2006, pp. 541-547.

Somalu, M.R., Brandon, N.P. and Yufit, V. A study of the rheological properties of NiO/ScSZ screen-printing inks and their application to SOFC anodes, ECS Transactions, Vol. 35(1), 2011, pp. 1483-1500.

Somalu, M.R., Muchtar, A. and Brandon N.P. Understanding the Rheology of screen-printing inks for the fabrication of SOFC thick films, ECS Transactions, Vol. 68(1), 2015, pp. 1323-1331.