การสกัดแคโรทีนอยด์จากเนื้อสีเหลืองของฟักข้าว: สภาวะที่เหมาะสมในการสกัดด้วยเอนไซม์และความสามารถในการต้านอนุมูลอิสระของสารสกัด

ผู้แต่ง

  • วรากร เกิดทรัพย์ อาจารย์, หมวดวิชาคณิตศาสตร์และวิทยาศาสตร์สำหรับวิศวกร คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเกษมบัณฑิต เขตสวนหลวง กรุงเทพฯ 10250
  • พิสุทธิ หนักแน่น อาจารย์, สาขาวิทยาศาสตร์การอาหารและโภชนาการ คณะเทคโนโลยีและนวัตกรรมผลิตภัณฑ์การเกษตร มหาวิทยาลัยศรีนครินทรวิโรฒ เขตวัฒนา กรุงเทพฯ 10110
  • ปรมาภรณ์ เกิดทรัพย์ อาจารย์, สาขาเทคโนโลยีชีวภาพและผลิตภัณฑ์การเกษตร คณะเทคโนโลยีและนวัตกรรมผลิตภัณฑ์การเกษตร มหาวิทยาลัยศรีนครินทรวิโรฒ เขตวัฒนา กรุงเทพฯ 10110

คำสำคัญ:

ฟักข้าว, Rapidase Ex Color, แคโรทีนอยด์, เนื้อสีเหลือง

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่อหาสภาวะที่เหมาะสมในการสกัดแคโรทีนอยด์จากเนื้อสีเหลืองของฟักข้าวโดยใช้เอนไซม์ Rapidase Ex Color และประเมินความสามารถในการต้านอนุมูลอิสระของสารสกัด โดยเริ่มต้นศึกษาระดับความเข้มข้นของเอนไซม์ในช่วงร้อยละ 0.25–3.0 พบว่าความเข้มข้นของเอนไซม์ร้อยละ 1 ให้ปริมาณลูทีน ไลโคพีนและเบต้าแคโรทีนสูงสุด ดังนั้นจึงเลือกความเข้มข้นของเอนไซม์ร้อยละ 1 ไปศึกษาผลของระยะเวลาในการสกัดต่อปริมาณแคโรทีนอยด์ที่สกัดได้ พบว่าระยะเวลาที่เหมาะสมในการสกัดคือ 3 ชั่วโมงโดยให้ปริมาณปริมาณลูทีน ไลโคพีน และเบต้าแคโรทีนเท่ากับ 40, 33 และ 48 มิลลิกรัม/กรัม ตามลำดับ จากนั้นนำสารสกัดที่เตรียมได้มาทำการวิเคราะห์ความสามารถในการต้านอนุมูลอิสระด้วยวิธี DPPH-RSA, FRAP และ Reducing powder พบว่าสารสกัดจากเนื้อสีเหลืองของฟักข้าวที่ใช้เอนไซม์ในกระบวนการสกัดมีความสามารถในการต้านอนุมูลอิสระสูงกว่าชุดการทดลองที่ไม่มีการใช้เอนไซม์ในกระบวนการสกัดประมาณ 2 เท่าเมื่อวิเคราะห์ด้วยวิธี DPPH-RSA และ Reducing power และประมาณ 1.5 เท่าเมื่อวิเคราะห์ด้วยวิธี FRAP ดังนั้นการใช้เอนไซม์ Rapidase Ex Color สามารถช่วยในการเพิ่มประสิทธิภาพการสกัดแคโรทีนอยด์จากเนื้อสีเหลืองของฟักข้าวและส่งผลให้ความสามารถในการต้านอนุมูลอิสระเพิ่มขึ้นเช่นกัน

เอกสารอ้างอิง

Phan-Thi H, Wache Y. Isomerization and increase in the antioxidant properties of lycopene from Momordica cochinchinensis (gac) by moderate heat treatment with UV–Vis spectra as a marker. Food Chemistry 2014;156:58-63.

Nhung DT, Bung PN, Ha NT, Phong TK. Changes in lycopene and beta carotene contents in aril and oil of gac fruit during storage. Food Chemistry 2010;121:326-31.

Vuong LT, Franke AA, Custer LJ, Murphy SP. Momordica cochinchinensis Spreng. (gac) fruit carotenoids reevaluated. Journal of Food Composition and Analysis 2006;19:664-8.

Kubola J, Siriamornpun S. Physicochemicals and antioxidant activity of different fractions (peel, pulp, aril and seed) of Thai Gac (Momordica cochinchinensis Spreng). Food Chemistry 2011;127:1138-45.

Becerra MO, Contrerac LM, Lo MH, Diaz JM, Herrera GC. Lutein as a functional food ingredient: Stability and bioavailability. Journal of Functional Foods 2020;66:1033771-91.

Sangkasanya S, Naknaen P, Suntikul N, Lertpitakthum S. Enhancing Extraction Efficiency of Carotenoids from Yellow Pulp of Gac Fruit (Momordica cochinensis (Lour.) Spreng) by Biological Process: Effect of Rapidase Concentration. Proceeding of The 28th Annual Meeting of the Thai Society for Biotechnology and International Conference; 2016 November 28-30, Thailand.

Kha TC, Phan-Tai H, Nguyen MH. Effects of pre-treatments on the yield and carotenoid content of Gac oil using supercritical carbon dioxide extraction. Journal of Food Engineering 2014;120:44-9.

Phakawat T, Soottawat B, Thummanoon P. Effects of oxygen and antioxidants on the lipid oxidation and yellow discolouration of film from red tilapia mince. Journal of the Science of Food and Agriculture 2012:92;2507-17

Intarasirisawat R, Benjakul S, Visessanguan W, Wu J. Antioxidative and functional properties of protein hydrolysate from defatted skipjack (Katsuwonous pelamis) roe. Food Chemistry 2012;135:3039-48.

Choudhari SM, Anathanarayan L. Enzyme aided extraction of lycopene from tomato tissues. Food Chemistry 2007;102:77-81.

Ranveer RC, Patil SN, Sahoo A K. Effect of different parameters on enzyme-assisted extraction of lycopene from tomato processing waste. Food and Bioproducts Processing 2013;91:370-5.

Lombardelli C, Liburdi K, Benucci I, Esti M. Tailored and synergistic enzyme-assisted extraction of carotenoid-containing chromoplasts from tomatoes. Food and Bioproducts Processing 2020;121:43-53.

Strati IF, Gogou E, Oreopoulou V. Enzyme and high pressure assisted extraction of carotenoids from tomato waste. Food and Bioproducts Processing 2015;94:668-74.

Kim CH, Park MK, Kim SK, Cho YH. Antioxidant capacity and anti-inflammatory activity of lycopene in watermelon. International Journal of Food Science and Technology 2014;49:2083-91.

Kittipat Sopittummakhun and Panthip Rattanasinganchan. Extraction and determination of antioxidant activity in herbal plant. Huachiew Chalermprakiat Science and Technology Journal 2017;1:86-94 (In Thai)

Chuyen HV, Roach PD, Golding JB, Park SE, Nguyen MH. Encapsulation of carotenoid-rich oil from Gac peel: Optimisation of the encapsulating process using a spray drier and the storage stability of encapsulated powder. Powder Technology 2019;344:373-9.

Kong KW, Ismail A. Lycopene content and lipophilic antioxidant capacity of by-products from Psidium guajava fruits produced during puree production industry. Food and Bioproducts Processing 2011;89:53-61.

ดาวน์โหลด

เผยแพร่แล้ว

2023-12-27

ฉบับ

ประเภทบทความ

บทความวิจัย (Research Article)