A STUDY OF THE HYBRID MODEL PERFORMANCE FOR TIME SERIES FORECASTING
คำสำคัญ:
Artificial Neural Networks, ARIMA, , Hybrid model, Time Series Forecastingบทคัดย่อ
Automotive export is an important industry that contributes to Thailand economy. The current models to forecast the export quantity include Moving Average (MV), Holt-Winters (HW), Autoregressive Integrated Moving Average (ARIMA), and Artificial Neural Networks (ANNs). However, time series data often contain both linear and nonlinear patterns which the current forecasting models cannot provide much accuracy. In this study, a hybrid model is proposed to forecast automotive export quantity. The hybrid model combines the unique strength of ARIMA and ANN which is good for modeling linear and nonlinear behavior data. The comparison of ARIMA, ANN, Additive ARIMA-ANN and Multiplicative ARIMA-ANN is presented. Performance of the hybrid models is measured using the mean absolute deviation, the mean square error and mean absolute percentage error. The results indicate that the performance of the hybrid models is better in term of forecast accuracy than the other compared models.
Downloads
เผยแพร่แล้ว
ฉบับ
บท
License
ลิขสิทธิ์
บทความที่ได้รับการตีพิมพ์ในวิศวกรรมสารเกษมบัณฑิต ถือเป็นกรรมสิทธิ์ของมหาวิทยาลัยเกษมบัณฑิต ห้ามนำข้อความทั้งหมดไปตีพิมพ์ซ้ำ ยกเว้นได้รับอนุญาตจากมหาวิทยาลัยเกษมบัณฑิตแล้ว
ความรับผิดชอบ
หากบทความที่ได้รับการตีพิมพ์นั้นเป็นบทความที่ละเมิดลิขสิทธิ์ของผู้อื่นหรือมีความไม่ถูกต้องในเนื้อหาของบทความ ผู้เขียนบทความนั้นต้องเป็นผู้รับผิดชอบ