การบำบัดน้ำเสียโรงพยาบาลที่มีการปนเปื้อนยาปฏิชีวนะโดยระบบถังปฏิกรณ์ชีวภาพเมมเบรน

Authors

  • นิติวิศว์ แตงไทย อาจารย์, สาขาวิชาวิศวกรรมสิ่งแวดล้อม คณะวิศวกรรมศาสตร์และสถาปัตยกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลสุวรรณภูมิ 217 ถนนนนทบุรี ตำบลสวนใหญ่ อำเภอเมืองนนทบุรี จังหวัดนนทบุรี 11000
  • กฤษณะ จิรสารสวัสดิ์ อาจารย์, สาขาวิชาวิศวกรรมสิ่งแวดล้อม คณะวิศวกรรมศาสตร์และสถาปัตยกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลสุวรรณภูมิ 217 ถนนนนทบุรี ตำบลสวนใหญ่ อำเภอเมืองนนทบุรี จังหวัดนนทบุรี 11000
  • สิริลักษณ์ ประเสริฐกุลศักดิ์ อาจารย์, สาขาวิชาวิศวกรรมสิ่งแวดล้อม คณะวิศวกรรมศาสตร์และสถาปัตยกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลสุวรรณภูมิ 217 ถนนนนทบุรี ตำบลสวนใหญ่ อำเภอเมืองนนทบุรี จังหวัดนนทบุรี 11000

Keywords:

Antibiotics, Hospital Wastewater, Membrane bioreactor

Abstract

This research investigated the efficiency of antibiotic removal from hospital wastewater using a membrane bioreactor system. The system was operated with a hydraulic retention time of 3 hours, comparing microbial sludge concentrations of 4 g/L and 6 g/L. The system was initiated once the microbial sludge reached a stable treatment state, with each experiment running for approximately 60 days. The results showed that a higher microbial sludge concentration (6 g/L) exhibited superior antibiotic removal efficiency compared to a concentration of 4 g/L. At the concentration of 4 g/L, the system achieved 100% removal of lincomycin and trimethoprim, while clarithromycin, ciprofloxacin, and norfloxacin removal efficiencies ranged between 17.0% and 57.0%. Increasing the microbial sludge concentration to 6 g/L resulted in 100% removal of lincomycin, erythromycin, and trimethoprim, while the removal efficiencies for norfloxacin, ofloxacin, levofloxacin, and doxycycline ranged between 42.0% and 53.3%. However, the system was unable to eliminate ampicillin and sulfamethoxazole at both sludge concentrations (4 and 6 g/L). These findings indicate that microbial sludge concentration significantly influences antibiotic removal efficiency and can be utilized to optimize hospital wastewater treatment systems for improved performance.

References

Naquin A, Shrestha A, Sherpa M, Nathaniel R, Boopathy R. Presence of antibiotic resistance genes in a sewage treatment plant in Thibodaux, Louisiana, USA. Bioresource Technology. 2015;188:79-83.

Rodriguez-Mozaz S, Chamorro S, Marti E, Huerta B, Gros M, Sànchez-Melsió A, et al. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water research 2015;69:234-42.

Christou A, Agüera A, Bayona JM, Cytryn E, Fotopoulos V, Lambropoulou D, et al. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes – a review. Water Research 2017;123:448-67.

Al Aukidy M, Al Chalabi S, Verlicchi P. Hospital wastewater treatments adopted in Asia, Africa, and Australia. In: Verlicchi P, editor. Hospital Wastewaters: Characteristics, Management, Treatment and Environmental Risks. Cham, Switzerland: Springer; 2018. p. 171-88.

Thai Working Group on Health Policy Systems Research on Antimicrobial Resistance (HPSR-AMR). Consumption of antimicrobial agents in Thailand in 2017. Bangkok, Thailand; 2018.

Chiemchaisri W, Chiemchaisri C, Hamjinda NS, Jeensarut C, Buranapakdee P, Thammalikitkul V. Field investigation of antibiotic removal efficacies in different hospital wastewater treatment processes in Thailand. Emerging Contaminants 2022;8:329-39.

Ata R, Töre GY. Characterization and removal of antibiotic residues by NFC-doped photocatalytic oxidation from domestic and industrial secondary treated wastewaters in Meric-Ergene Basin and reuse assessment for irrigation. Journal of Environmental Management 2019;233:673-80.

Liu Y, Gu P, Yang Y, Jia L, Zhang M, Zhang G. Removal of radioactive iodide from simulated liquid waste in an integrated precipitation reactor and membrane separator (PR-MS) system. Separation and Purification Technology 2016;171:221-8.

Feng X, Zong Z, Elsaidi SK, Jasinski JB, Krishna R, Thallapally PK, et al. Kr/Xe separation over a chabazite zeolite membrane. Journal of the American Chemical Society 2016;138(31):9791-4.

Liu Y, Lo S, Liou Y, Hu C. Removal of nonsteroidal anti-inflammatory drugs (NSAIDs) by electrocoagulation-flotation with a cationic surfactant. Separation and Purification Technology 2015;152:148-54.

Rodriguez-Mozaz S, Vaz-Moreirac I, Giustina SVD, Llorca M, Barcelo D, Schuberte S, et al. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environment International 2020;140:105733.

Gagné F, André C, Fortier M, Fournier M. Immunotoxic potential of aeration lagoon effluents for the treatment of domestic and hospital wastewaters in the freshwater mussel, Elliptio complanate. Journal of Environmental Sciences 2012;24(5):781-9.

Hamjinda NS, Chiemchaisri W, Watanabe T, Honda R, Chiemchaisri C. Toxicological assessment of hospital wastewater in different treatment processes. Environmental Science and Pollution Research 2018;25:7271-9.

Prasertkulsak S, Chiemchaisri C, Chiemchaisri W. Pharmaceutical compound removal during mixed liquor filtration in membrane bioreactor operated under long sludge age. Jurnal Teknologi 2018;80(3-2):45-50.

Schröder HF, Tambosi JL, Sena RF, Moreira RFPM, José HJ, Pinnekamp J. The removal and degradation of pharmaceutical compounds during membrane bioreactor treatment. Water Science and Technology 2012;65(5):833-9.

Nguyen T, Bui X, Luu V, Nguyen P, Guo W, Ngo H. Removal of antibiotics in sponge membrane bioreactors treating hospital wastewater: comparison between hollow fiber and flat sheet membrane systems. Bioresource Technology 2017;240:42-9.

Hamjinda NS, Chiemchaisri W, Chiemchaisri C. Upgrading two-stage membrane bioreactor by bioaugmentation of Pseudomonas putida entrapment in PVA/SA gel beads in treatment of ciprofloxacin. International Biodeterioration & Biodegradation 2017;119:595-604.

Tang Y, Luo L, Thong Z, Chung T. Recent advances in membrane materials and technologies for boron removal. Journal of Membrane Science 2017;541:434-46.

Nunes SP, Culfaz-Emecen PZ, Ramon GZ, Visser T, Koops GH, Jin W, et al. Thinking the future of membranes: perspectives for advanced and new membrane materials and manufacturing processes. Journal of Membrane Science 2020;598:117761.

Li X, Mo Y, Qing W, Shao S, Tang CY, Li J. Membrane-based technologies for lithium recovery from water lithium resources: a review. Journal of Membrane Science 2019;591:117317.

Li P, Wang Z, Qiao Z, Liu Y, Cao X, Li W, et al. Recent developments in membranes for efficient hydrogen purification. Journal of Membrane Science 2015;495:130-68.

Uliana AA, Bui NT, Kamcev J, Taylor MK, Urban JJ, Long JR. Ion-capture electrodialysis using multifunctional adsorptive membranes. Science. 2021;372(6539):296-9.

Chaudhry RM, Nelson KL, Drewes JE. Mechanisms of pathogenic virus removal in a full-scale membrane bioreactor. Environmental Science & Technology 2015;49(5):2815-22.

Vieira WT, de Farias MB, Spaolonzi MP, Carlos da Silva MG, Adeodato Vieira MG. Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation. A review. Environmental Chemistry Letters 2020;18(4):1113-43.

Bradshaw JL, Ashoori N, Osorio M, Luthy RG. Modeling cost, energy, and total organic carbon trade-offs for stormwater spreading basin systems receiving recycled water produced using membrane-based, ozone-based, and hybrid advanced treatment trains. Environmental Science & Technology 2019;53(6):3128-39.

APHA/AWWA/WEF. Standard Methods for the Examination of Water and Wastewater. 23rd ed. Denver, USA: American Public Health Association, American Water Works Association, Water Environment Federation; 2017.

U.S. Environmental Protection Agency. Method 1694: Pharmaceuticals and personal care products in water, soil, sediment, and biosolids. Washington, D.C., USA: U.S. EPA; 2007.

Dos Santos CR, Lebron YAR, Moreira VR, Koch K, Amaral MCS. Biodegradability, environmental risk assessment and ecological footprint in wastewater technologies for pharmaceutically active compounds removal. Bioresource Technology 2022;343:126150. doi: 10.1016/j.biortech.2021.126150.

Prasertkulsak S, Chiemchaisri C, Chiemchaisri W, Itonaga T, Yamamoto K. Removals of pharmaceutical compounds from hospital wastewater in membrane bioreactor operated under short hydraulic retention time. Chemosphere 2016;150:624-31.

Prasertkulsak S, Chiemchaisri C, Chiemchaisri W, Yamamoto K. Removals of pharmaceutical compounds at different sludge particle size fractions in membrane bioreactors operated under different solid retention times. Journal of Hazardous Materials 2019;368:124-32.

Vo T, Bui X, Chen S, Nguyen P, Cao N, Vo T, et al. Hospital wastewater treatment by sponge membrane bioreactor coupled with ozonation process. Chemosphere 2019;230:377-83.

Kaewmanee A, Chiemchaisri W, Chiemchaisri C. Influence of high doses of antibiotics on anoxic-aerobic membrane bioreactor in treating solid waste leachate. International Biodeterioration & Biodegradation 2019;138:15–22. doi: 10.1016/j.ibiod.2018.12.011.

Zheng W, Wen X, Zhang B, Qiu Y. Selective effect and elimination of antibiotics in membrane bioreactor of urban wastewater treatment plant. Science of The Total Environment 2019;646:1293-303. doi: 10.1016/j.scitotenv.2018.07.400.

Zhu T, Su Z, Lai W, Zhang Y, Liu Y. Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology. Science of The Total Environment 2021;776:145906. doi:10.1016/j.scitotenv.2021.145906.

Xia S, Jia R, Feng F, Xie K, Li H, Jing D, et al. Effect of solids retention time on antibiotics removal performance and microbial communities in an A/O-MBR process. Bioresource Technology 2012;106:36-43. doi: 10.1016/j.biortech.2011.11.112.

Downloads

Published

2025-04-28

Issue

Section

บทความวิจัย (Research Article)