การแก้ปัญหาการจ่ายโหลดอย่างประหยัดร่วมกับการปล่อยก๊าซเรือนกระจกที่มีฟังก์ชันราคาเชื้อเพลิงแบบไม่เรียบด้วยการผสมผสานวิธีการหาคำตอบที่เหมาะสมที่สุดเชิงการจัดและวิธีเชิงแจกแจง

Authors

  • จิรพนธ์ ทาแกง อาจารย์, สาขาวิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา ลำปาง 200 หมู่ 17 ต.พิชัย อ.เมือง จ.ลำปาง 52000
  • วันไชย คำเสน อาจารย์, สาขาวิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา ลำปาง 200 หมู่ 17 ต.พิชัย อ.เมือง จ.ลำปาง 52000
  • ทวินันท์ จันทะวัง อาจารย์, สาขาวิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา ลำปาง 200 หมู่ 17 ต.พิชัย อ.เมือง จ.ลำปาง 52000
  • เพลิน จันทร์สุยะ อาจารย์, สาขาวิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา เชียงราย 99 หมู่ 10 ต.ทรายขาว อ.พาน จ.เชียงราย 57120

Keywords:

combinatorial optimization, exhaustive enumeration, economic dispatch

Abstract

This research is a combination of finding the optimal solution by combinatorial optimization and exhaustive enumeration methods. To solve the problem of economical load distribution combined with greenhouse gas emissions with a non-smooth function. The method is to use the answer obtained from the optimal arrangement method, which is the SA method, as the initial answer. It then redefines the search boundary around the initial answer and uses the distributional optimal solution, BCO. Use a case study consisting of a large system with 40 generator units with demand 10500 MW and a system with a non-smooth cost function. The results were compared with SA and BCO in terms of the quality of the answers and the speed of convergence to the answers. The proposed method provides the best quality of answers and converge on the answer as quickly as possible. In addition, to test the efficiency, the results were compared with the GSA and CFLBO methods. The results of the comparison of the proposed methods yielded the answer in terms of the lowest production cost. Therefore, it can be concluded that the proposed method can be used to efficiently find solutions to the economical load distribution problem with a non-smooth fuel price function.

References

Wood AJ, Wollenberg BF. Power generation operation and control. New York, USA: Wiley; 1984.

Chang Y, Chan T, Lee W. Economic dispatch of chiller plant by gradient method for saving energy. Applied Energy 2010;87(4):1096-101.

El-Keib AA, Ma H, Hart JL. Environmentally constrained economic dispatch using the LaGrangian relaxation method. IEEE Transactions Power Systems 1994;9(4):1723-9.

Ringlee RJ, Williams DD. Economic dispatch operation considering valve throttling losses, II-distribution of system loads by the method of dynamic programming. IEEE Transactions on Power Apparatus and Systems 1963:615-20.

Venkatesh M, Raghutu R. Economic load dispatch using simulated annealing algorithm. International Research Journal of Engineering and Technology 2015;2(3):1961-4.

Ziane I, Benhamida F, Graa A. Simulated annealing algorithm for combined economic and emission power dispatch using max/max price penalty factor. Neural Computing and Applications 2017;28:197-205.

Bouddou R, Benhamida F, Haba M, Belgacem M, Meziane MA. Simulated annealing algorithm for dynamic economic dispatch problem in the electricity market incorporating wind energy. Ingénierie des Systèmes d’Information 2020;25(6):719-27.

Naama B, Bouzeboudja H, Allali A. Solving the economic dispatch problem by using tabu search algorithm. Energy Procedia 2013;36:694-701.

Kumar VJ. Optimization of economic load dispatch problem by using tabu search algorithm. International Journal of Latest Trends in Engineering and Technology 2017;8(4-1):182-7.

Daniel L, Chaturvedi KT. Economic load dispatch using ant lion optimization. International Journal of Engineering Trends and Technology 2019;67(4):81-4.

Nazari-Heris M, Mehdinejad M, Mohammadi-Ivatloo B, Babamalek-Gharehpetian G. Combined heat and power economic dispatch problem solution by implementation of whale optimization method. Neural Computing Applications 2019;31:421-36.

Okozi SO, Ogbonna GC, Olubiwe M, Ezugwu EO. Solution to the economic dispatch problem of the Nigerian power system using genetic algorithm. Nigerian Journal of Technology 2019;38(4):1036-47.

Pulluri H, Vyshnavi M, Shraddha P, Sai Priya B, Hari TS, Preeti. Genetic algorithm with multi-parent crossover solution for economic dispatch with valve point loading effects. In: Saini HS, Srinivas T, Vinod Kumar DM, Chandragupta Mauryan KS, editors. Innovations in Electrical and Electronics Engineering. Singapore: Springer; 2020. p. 429-38.

Kalakova A, Nunna HSVSK, Jamwal PK, Doolla S. A novel genetic algorithm based dynamic economic dispatch with short-term load forecasting. IEEE Transactions on Industry Applications 2020;57(3):2972-82.

Chen X, Li K, Xu B, Yang Z. Biogeography-based learning particle swarm optimization for combined heat and power economic dispatch problem. Knowledge-Based Systems 2020;208:106463.

Khan NH, Wang Y, Tian D, Raja MAZ, Jamal R, Muhammad Y. Design of fractional particle swarm optimization gravitational search algorithm for optimal reactive power dispatch problems. IEEE Access 2020;8:146785-806.

Paramguru J, Kumar Barik S, Kumar Barisal A, Dhiman G, HJ Rutvij, Alkahtani M, et al. Addressing economic dispatch problem with multiple fuels using oscillatory particle swarm optimization. Computers, Materials and Continua 2021;69(3):2863-82.

Suresh V, Janik P, Jasinski M. Metaheuristic approach to optimal power flow using mixed integer distributed ant colony optimization. Archives of Electrical Engineering 2020;69(2):335-48.

Godha NR, Bapat VN, Korachagaon I. Ant colony optimization technique for integrating renewable DG in distribution system with techno-economic objectives. Evolving Systems 2022;13:485-98.

Tung NS, Chakravorty S. Solution to economic power dispatch planning problem considering generator constraints using artificial bee colony algorithm. International Journal of Hybrid Information Technology 2016;9(5):399-406.

Raghav RS, Amudhave J, Dhavachelvan P. Enhanced artificial bee colony optimization for solving economic load dispatch. IIOAB Journal 2018;8(2):208-16.

Aurasopon A, Khamsen W. An improved local search involving bee colony optimization using lambda iteration combined with a golden section search method to solve an economic dispatch problem. Przegląd Elektrotechniczny 2019;95(1):202-8.

Aurasopon A, Takeang C. Hybrid algorithm combining lambda iteration and bee colony optimization to solve an economic dispatch problem with prohibited operating zones. Przegląd Elektrotechniczny 2019;95(10):12-7.

Aurasopon A, Takeang C. Multiple hybrid of lambda iteration and bee colony optimization method for solving economic dispatch problem. International Journal Electrical Engineering and Informations 2021;13(1):57-72.

Tahir MW, Abbas G, Ilyas MA, Ullah N, Muyeen SM. Economic emission and energy scheduling for renewable rich network using bio-inspired optimization. IEEE Access.2022;10:79713-29.

Suman M, Sakthivel VP. Coulomb’s and Franklin’s law based optimization for nonconvex economic and emission dispatch problems. International Energy Jornal 2020;20:225-38.

Singh N, Chakrabarti T, Chakrabarti P, Margala M, Gumta A, Phani Praveen S, et al. Novel heuristic optimization technique to solve economic load dispatch and economic emission load dispatch problems. Electronics 2023;12(13):2921.

Guvenc U, Sonmez Y, Duman S, Yorukeren N. Combined economic and emission dispatch solution using gravitational search algorithm. Scientia Iranica 2012;19(6):1754-62.

Downloads

Published

2024-12-25

Issue

Section

บทความวิจัย (Research Article)