APPLICATION OF MATHEMATICAL EQUATIONS TO FORECAST ELECTRICITY CONSUMPTION FOR ENERGY MANAGEMENT IN UNIVERSITIES: A CASE STUDY OF UTTARADIT RAJABHAT UNIVERSITY
Main Article Content
Abstract
The objective of this research is to apply and test mathematical equations for volume forecasting the electricity usage at Uttaradit Rajabhat University using 7 factors; 1) number of buildings, 2) building usable area (square meters), 3) number of air conditioners, 4) number of light bulbs, 5) number of students, 6) number of teachers and personnel, and 7) amount of energy use during the time span of 6 years (2018-2023) and applying 4 equations which were 1) Trend prediction equation (Trend P.), 2) Simple moving average equation (SMA), 3) Exponential equation Adaptive one layer (ARRSES), and 4) Exponential weighted moving average (EWMA) equations. The research results revealed that when testing the mathematical equation by bringing monthly data into the equation, EWMA had the least error with an average of 15.20 percent, followed by the ARRSES equation with an average error of 18.15 percent, Trend P equation had the average error of 18.59 percent, and the SMA equation had an average error of 19.98 percent. When the annual average data was used with the equation, it was found that the Trend P. equation had the least error of 6.40 percent, while the other equations had more than 25 percent of error. Therefore, it could be concluded that the appropriate equation for forecasting electricity use should be the Trend P. equation combined with annual data. This was because the data set used was linear, Trend P. is the most appropriate. When the above equation is applied for forecasting together with annual electricity usage data of Uttaradit Rajabhat University in 2023, it is found that in 2024 - 2026 there will be an increase in the amount of electricity used. 5.57 percent, 6.37 percent, and 12.23 percent, respectively. If there is no use of alternative energy or energy management policy As a result, in 2026, Uttaradit Rajabhat University will have an electricity consumption of 7,525,959 kilowatt-hours. Or calculate the electricity cost that must be paid 36,801,939 baht per year by calculating the electricity cost of 4.89 baht per unit from the total average electricity cost from Value Added Tax (VAT) plus the automatic electricity rate adjustment (Ft) from the year 2018 – 2023. Therefore, the application of the above mathematical equations can predict the electricity consumption of Uttaradit Rajabhat University. As a result, the university can use the data to formulate appropriate policies for energy management in the university.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
กระทรวงพลังงาน. (2552, 25 กันยายน). ประกาศกระทรวงพลังงาน เรื่อง หลักเกณฑ์และวิธีการดำเนินการจัดการพลังงานในโรงงานควบคุมและอาคารควบคุม พ.ศ. 2552.
มหาวิทยาลัยราชภัฏอุตรดิตถ์ กองนโยบายและแผน. (2566). รายงานประจำปี 2566. กองนโยบายและแผน มหาวิทยาลัยราชภัฏอุตรดิตถ์.
ธัญญพัทธ์ ทิพย์ศุภวงศ์, วัชระ วงค์ปัญโญ, บุญวัฒน์ วิจารณ์พล, เกศนีย์ อิ่นอ้าย, และวราคม วงศ์ชัย. (2565). การจำลองสมรรถนะของระบบผลิตไฟฟ้าเซลล์แสงอาทิตย์บนหลังคาแบบเชื่อมต่อกับระบบสายส่งของเทศบาลตำบลแม่เมาะ จังหวัดลำปาง. วารสารวิชาการ มหาวิทยาลัยราชภัฏอุตรดิตถ์, 17(1), 81-97.
วุฒิพงษ์ นิลจันทร์ และ นิติ เอี่ยมชื่น (2563). การคาดการณ์ปริมาณการใช้ไฟฟ้าภาคเหนือตอนบนของประเทศไทย. วารสารวิทยาศาสตร์บูรพา, 25(1), 76-89.
Adetona, S., Ogundeji, A., Ipinnimo, O., & Salawu, R. (2020). Reducing wastage in electricity usage through the use of advancement in GSM technology. Journal of Engineering and Technology (JET), 11(1), 83-96. https://jet.utem.edu.my/jet/article/view/5546
Adewuyi, A. W. (2016). Modelling stock prices with exponential weighted moving average (EWMA). Journal of Mathematical Finance, 6(1), 99-104. https://doi.org/10.4236/jmf.2016.61011
Aji, B. G., Sondawa, D. C. A., Anindika, F. A., & Januarita, D. (2022). Analisis peramalan obat menggunakan metode simple moving average, weighted moving average, dan exponential smoothing. JURIKOM (Jurnal Riset Komputer), 9(4), 959-965. https://doi.org/10.30865/jurikom.v9i4.4454
Dong, R., & Pedrycz, W. (2008). A granular time series approach to long-term forecasting and trend forecasting. Physica A: Statistical Mechanics and its Applications, 387(13), 3253-3270. https://doi.org/10.1016/j.physa.2008.01.095
Elduque, A., Elduque, D., Clavería, I., & Javierre, C. (2018). Influence of Material and Injection Molding Machine’s selection on the electricity consumption and environmental impact of the injection molding process: An experimental approach. International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 13-28. https://doi.org/10.1007/s40684-018-0002-0
Fahrudin, T. M., Ambariawan, R. P., & Kamisutara, M. (2021). Demand forecasting of the automobile sales using least square, single exponential smoothing and double exponential smoothing. Petra International Journal of Business Studies (IJBS), 4(2), 122-130. https://doi.org/10.9744/ijbs.4.2.122-130
Herdiani, E. T., Fandrilla, G., & Sunusi, N. (2018). Modified exponential weighted moving average (EWMA) control chart on autocorrelation data. Journal of physics: Conference series, 979. https://doi.org/10.1088/1742-6596/979/1/012097
Klyuev, R. V., Morgoev, I. D., Morgoeva, A. D., Gavrina, O. A., Martyushev, N. V., Efremenkov, E. A., & Mengxu, Q. (2022). Methods of forecasting electric energy consumption: A literature review. Energies, 15(23), 8919. https://doi.org/10.3390/en15238919
Nasef, A. F., Khattab, H. A. E.-H., & Awad, F. F. (2021). Evaluating the impact of demand side management techniques on household electricity consumption, a real case. ERJ. Engineering Research Journal, 44(2), 149-157. https://doi.org/10.21608/erjm.2021.62524.1081
Nimoh, P., Duah, D., & Marful, A. (2021). Energy consumption and usage reduction in lecture halls, Kwame Nkrumah University of Science and Technology, Preprints. https://doi.org/10.20944/preprints202106.0694.v1
Onaolapo, A. K., Carpanen, R. P., Dorrell, D. G., & Ojo, E. E. (2021). Forecasting electricity outage in KwaZulu-Natal, south africa using trend projection and artificial neural networks techniques. IEEE PES/IAS PowerAfrica, 1-5. https://doi.org/10.1109/PowerAfrica52236.2021.9543182
Pataropura, A., Sabatino, I. D., & Riki, R. (2020). Inventory management with forecasting method: Single moving average and trend projection. Bit-Tech: Binary Digital-Technology, 2(3), 110-121. https://doi.org/10.32877/bt.v2i3.162
Ramadhan, R. H., Yusman, R., & Pranoto, G. T. (2022). Comparison of holt winters and simple moving average models to identify the best model for predicting flood potential based on the normalized difference water index. JISA (Jurnal Informatika dan Sains), 5(2), 99-105. https://doi.org/10.31326/jisa.v5i2.1316
Shea, R. P., Worsham, M. O., Chiasson, A. D., Kissock, J. K., & McCall, B. J. (2020). A lifecycle cost analysis of transitioning to a fully-electrified, renewably powered, and carbon-neutral campus at the University of Dayton. Sustainable Energy Technologies and Assessments, 37. https://doi.org/10.1016/j.seta.2019.100576