A NOTE ON A FUNCTIONAL EQUATION RELATED TO DIGITAL FILTERING

Main Article Content

Khanithar Naenudorn

Abstract

This research was a study to determine the functional equation corresponding to the following functional equation:


gif.latex?f(x+s,&space;y+t)+f(x-s,&space;y)+f(x,&space;y-t)=f(x-s,&space;y-t)+f(x+s,&space;y)+f(x,&space;y+t)                  (M)


for all gif.latex?x,&space;y,&space;t,&space;s&space;\in&space;G, and gif.latex?f:G\times&space;G\rightarrow&space;\mathbb{C}, where a 2-divisible abelian group and gif.latex?\mathbb{C} were a set of complex numbers. The research results revealed that there were two corresponding functional equations could be obtained as the followings:


gif.latex?f(x+2s,&space;y+2t)+f(x-2s,&space;y-t)+f(x-s,&space;y-2t)+f(x,&space;y+t)+f(x+s,&space;y)=f(x-2s,&space;y-2t)+f(x+2s,&space;y+t)+f(x+s,&space;y+2t)+f(x,&space;y-t)+f(x-s,&space;y)               (M1)


and


gif.latex?f(x+2s,&space;y)+f(x,&space;y+2t)+f(x-s,&space;y)+f(x,&space;y-t)+f(x-2s,&space;y+t)+f(x+s,&space;y-2t)=f(x-2s,&space;y)+f(x,&space;y-2t)+f(x+s,&space;y)+f(x,&space;y+t)+f(x+2s,&space;y-t)+f(x-s,&space;y+2t).                (M2)          

Article Details

Section
Research Article

References

Aczèl, J., Haruki, H., McKiernan, M. A., & Sakovič, G. N. (1968). General and regular solutions of function equations characterizing harmonic polynomials, Aequationes mathematicae, 1(1-2), 37-53.

Haruki, S. (1970). On the functional equation Aequationes mathematicae, 5, 118-119.

Haruki, S., & Nakagiri, S. (2007). A pexiderized wavelike partial difference functional equation, Aequationes mathematicae, 74(1-2), 1-6.

Hengkrawit, C., Laohakosol, V., & Naenudorn, K. (2016). Solutions of some particular pexiderized digital filtering functional, Annales Mathematicae et Informaticae, 46, 77-96.

Naenudorn, K., & Hengkrawit, C. (2013). A Remark on a Functional Equation Related to Digital Filtering, Thai Journal of Science and Technology, 2(3), 226-230.

Kannappan, P. (2009). Functional Equations and Inequalities with Applications. New York: Springer.

Sahoo, P.K., & Szèkelyhidi, L. (2001). On a functional equation related to digitalfiltering, Aequationes mathematicae, 62(3), 280-285.