SOLVING THE HEISENBERG EQUATION OF MOTION OF THE TIME-DEPENDENT FORCED HARMONIC OSCILLATOR USING TIME-DEPENDENT ANNIHILATION AND CREATION OPERATORS

Main Article Content

Artit Hutem
Piyarut Moonsri
Mantana Deena

Abstract

For this study, the researchers purposed to evaluate the Heisenberg equation of motion for the creation and annihilation operator under the force vibration simple harmonic oscillation. Instead of using the first-order ordinary differential equation to solve the Heisenberg equation of motion, the researchers got the time-dependent creation and annihilation operator under the time-dependent force vibration simple harmonic oscillation. The behavior of wave group in the creation and annihilation operator for image part is destroyed by increasing of the parameter value of gif.latex?\alpha.

Article Details

Section
Research Article

References

Antia, A. D., Ituen, E. E., Ikot, A. N., Akpabio, L. E., & Ibanga, E. J. (2010). Quantum theory of damped harmonic oscillator. Global Journal of Pure and Applied Sciences, 16(4), 461- 467.

Balcou, P., L’Huillier, A., & Escande, D. (1996). High-order harmonic generation processes in classical and quantum anharmonic oscillators. Physical Review A, 53(5), 3456-3472.

Castanos, L. O., & Zuniga-Segundo, A. (2019). The forced harmonic oscillator: Coherent states and the RWA. Am. J. Phys, 87(10), 815-823.

Chung-In, U., & Kyu-Hwang, Y. (2002). Quantum theory of the harmonic oscillator in nonconservative system. Journal of the Korean physical society, 41(5), 594-616.

Gilbey, D. M., & Goodman, F. O. (1966). Quantum theory of the forced harmonic oscillator. American Journal of Physics, 34(143), 143-152.

Glauber, R., & Man’ko, V. I. (1984). Damping and fluctuation in coupled quantum oscillator system. Sov. Phys. JETP, 60(3), 450-458.

Kim, S. P., Santana, A. E., & Khanna, F.C. (2003). Decoherence of quantum damped oscillators. Journal of the Korean physical society, 43(4), 452-460.

Li, T. J. (2008). A concise quantum mechanical treatment of the forced damped harmonic oscillator. Central European Journal of Physics, 6(4), 891-894.

Lopez, R. M., & Suslov, S. K. (2009). The cauchy problem for a forced harmonic oscillator. Revista Mexicana de fisica, 55(2), 196-215.

Philbin, T. G. (2012). Quantum dynamics of the damped harmonic oscillator. New Journal of Physics, 14, 1-24.

Rekhviashvili, S., Pskhu, A., Agarwal, P., & Jain, S. (2019). Application of the fractional oscillator model to describe damped vibrations. Turkish Journal of Physics, 43, 236 – 242.

Rigo, M., Alber, G., Mota-Furtado, F., & O’Mahony, P. F. (1997). Quantum-state diffusion model and the driven damped nonlinear oscillator. Physical Review A, 55(3), 1665-1673.

Segovia-Chaves, F. (2018). The one-dimensional harmonic oscillator damped with Caldirola-Kanai Hamiltonian. Revista Mexicana de F´ısica E, 64, 47–51.