การประมาณประสิทธิภาพของปูนซีเมนต์ไฮดรอลิกในการพัฒนากำลังและความแข็งแกร่งของดินทรายสำหรับการปรับปรุงคุณภาพดิน

Authors

  • ปุณณวิช รุ่งเรือง นักศึกษาปริญญาโท, สาชาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยี ราชมงคลธัญบุรี 39 ม.1 ถ.รังสิต-นครนายก ต.คลองหก อ.คลองหก จ.ปทุมธานี 12110
  • วรพจน์ เพชรเกตุ นักศึกษาปริญญาเอก, สาขาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยี ราชมงคลธัญบุรี 39 ม.1 ถ.รังสิต-นครนายก ต.คลองหก อ.คลองหก จ.ปทุมธานี 12110
  • ศุภสิทธิ พงศ์ศิวะสถิตย์ อาจารย์, สาขาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี 39 ม.1 ถ.รังสิต-นครนายก ต.คลองหก อ.คลองหก จ.ปทุมธานี 12110
  • สุธี ปิยะพิพัฒน์ อาจารย์, สาขาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี 39 ม.1 ถ.รังสิต-นครนายก ต.คลองหก อ.คลองหก จ.ปทุมธานี 12110
  • อติเทพ ศรีคงศรี อาจารย์, สาขาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเกษมบัณฑิต 60 ถ. ร่มเกล้า เขตมีนบุรี กรุงเทพมหานคร 10510

Keywords:

Ground Improvement, Hydraulic cement, Unconfined compressive strength, Secant Modulus, Scanning Electron Microscope analysis

Abstract

This research aims to investigate the effectiveness of hydraulic cement (HC) in improving the strength and stiffness properties of sandy soil, specifically focusing on unconfined compressive strength (qu) and the secant modulus (E50), derived from the stress-strain relationship of unconfined compression tests. The soil samples used were sandy soil obtained from the construction site of a water pumping station at Ratchamnong Temple in Nong-Khai Province. These samples were mixed with HC at varying proportions of 10%, 15%, 20%, 25%, and 30% by dry weight. The curing periods employed were 3, 7, 14, and 28 days, with a water/cement ratio of 1:1. To evaluate HC as an environmentally friendly admixture for ground improvement, the test results using HC were compared with those using ordinary Portland cement (OPC) under identical cement content and curing periods. The results indicated that increasing the cement content and curing period enhanced both qu and E50 for both HC and OPC, showing similar trends for both types of cement. However, the results for HC were slightly lower than those for OPC, likely due to differences in oxide composition. Scanning Electron Microscope analysis reveals that the development of Ettringite formation, resulting from the cement hydration reaction, shows significant similarity between HC and OPC as the curing period increases. Despite this, the linearly correlation between qu and E50 for HC admixture was nearly identical to that for OPC admixture. From the overall results, the relationship between qu and E50 can be expressed as E50 = 78.165qu. Therefore, HC admixture can be effectively used in sustainable ground improvement, particularly in deep mixing methods, as an environmentally friendly alternative to OPC admixture.

References

Ministry of Transport. Technical standards for port and harbour facilities. London, UK: Ministry of Transpot; 1989.

Ministry of Transport. Technical standards for port and harbour facilities. Tokyo, Japan: The Overseas Coastal Area Development Institue of Japan; 1999.

Public Works Research Institute. Manual of ALicc method for ground improvement. Tsukuba, Japan: Public Works Research Institute; 2007.

The Ports and Harbours Association of Japan. Technical standards and commentaries for port and harbour facilities in Japan (Japanese version). Tokyo, Japan: The Ports and Harbours Association of Japan; 1989.

The Ports and Harbours Association of Japan. Technical standards and commentaries for port and harbour facilities in Japan (Japanese version). Tokyo, Japan: The Ports and Harbours Association of Japan; 1999.

The Ports and Harbours Association of Japan. Technical standards and commentaries for port and harbour facilities in Japan (Japanese version). Tokyo, Japan: The Ports and Harbours Association of Japan; 2007.

The Overseas Coastal Area Development Institute of Japan. Technical standards and commentaries for port and harbour facilities in Japan (English version). Tokyo, Japan: The Overseas Coastal Area Development Institute of Japan; 1991.

The Overseas Coastal Area Development Institute of Japan. Technical standards and commentaries for port and harbour facilities in Japan (English version). Tokyo, Japan: The Overseas Coastal Area Development Institute of Japan; 2002.

The Overseas Coastal Area Development Institute of Japan. Technical standards and commentaries for port and harbour facilities in Japan (English version). Tokyo, Japan: The Overseas Coastal Area Development Institute of Japan; 2009.

Public Works Research Center. Technical manual on deep mixing method for on land works. Tokyo, Japan: Public Works Research Center; 1999.

Public Works Research Center. Technical manual on deep mixing method for on land works. Tokyo, Japan: Public Works Research Center; 2004.

The Building Center of Japan. Design and quality control guideline of improved ground for building. Tokyo, Japan: The Building Center of Japan; 1997.

Ministry of Construction. Design and construction manual of liquefaction prevention techniques (draft). Joint Research Report. Tokyo, Japan: Ministry of Construction; 1999.

Yi Y, Liu S, Puppala AJ, Xi P. Vertical bearing capacity behaviour of single T-shaped soil–cement column in soft ground: laboratory modelling, field test, and calculation. Acta Geotechnica 2017;12(5):1077-88.

Yi Y, Liu S, Puppala AJ, Jing F. Variable-diameter deep mixing column for multi-layered soft ground improvement: Laboratory modeling and field application. Soils and Foundations 2019;59:633-43.

Pongsivasathit S, Petchgate W, Horpibulsuk S, Piyaphipat S. Composite contiguous pile wall and deep mixing column wall as a dam – design, construction and performance. Case Studies in Construction Materials 2021;15:e00771.

Coastal Development Institute of Technology. The deep mixing method – principle, design and construction. Lisse, Netherlands: A.A. Balkema Publishers; 2002.

Coastal Development Institute of Technology. The premixing method—principle, design and construction. London, United Kingdom: UK: A.A. Balkema Publishers; 2003.

Coastal Development Institute of Technology. Technical manual of deep mixing method for marine works. Tokyo, Japan: Coastal Development Institute of Technology; 2008.

Coastal Development Institute of Technology. Technical manual of premixing method. Tokyo, Japan: Coastal Development Institute of Technology; 2008.

Coastal Development Institute of Technology. Technical manual of light-weight geomaterial. Tokyo, Japan: Coastal Development Institute of Technology; 2008.

Coastal Development Institute of Technology. Technical manual of pneumatic flow mixing method. Tokyo, Japan: Coastal Development Institute of Technology; 2008.

Thai Cement Manufacturers Association. Hydraulic cement. Bangkok, Thailand: Thai Cement Manufacturers Association; 2022. (In Thai)

Petry TM, Little DN. Review of stabilization of clays and expansive soil in pavements and lightly loaded structures-history, practice, and future. Journal of Materials in Civil Engineering 2002;14(6):447-60.

Horpibulsuk S, Miura N, Nagaraj TS. Clay–water/cement ratio identity for cement admixed soft clays. Journal of Geotechnical and Geoenvironmental Engineering 2005;131(2):187-92.

Chaiyaput S, Manandhar S, Karki S, Ayawanna j. Characteristics of cement treated soil: A case study from soft Bangkok clay and red soil of Nepal. Lowland Technology International Journal 2020;22(2):178-91.

Suwanklang P, Chachamnan S, Suksiripattanapong C. Unconfined compressive strength and indirect tensile strength of crushed rock-cement waste improved with hydraulic cement. The 27th National Convention on Civil Engineering; 2002 Aug 24-26; Chiang Rai, Thailand. (In Thai)

Vinoth G, Moon S. W, Moon J, Ku T. Early strength development cement-treated sand using low-carbon rapid-hardening cements. Soils and Foundations 2018;58(5):1200-11.

Lambe TW, Michaels AS, Moh ZC. Improvement of soil-cement with alkali metal compounds. Highway Research Board Bulletin 1959;241:67-108.

Moh ZC. Reaction of soil minerals with cement and chemicals. Highway Research Record 1965;86:39-61.

Wang TZ, Wang CM, Zhang ZM, Huang XH. Mechanical property of cement-stabilized soil with nano-CaO and reinforcement mechanism analysis. Chemical Engineering Transactions 2016;51:1195-200.

Soeurt R, Somna R, Chalee W. Effect of alkaline activator on properties of mortar containing fly ash. Annual Concrete Conference 11; 2016 Feb 17-19; Nakhon Ratchasima, Thailand. (In Thai)

Sarkar PK, Chao KC, Wong KN, Wang M. Evaluation of index properties affecting unconfined compressive strength of jet-grouted soil columns for Bangkok soils. International Conference on Deep Foundations and Ground Improvement; 2022 May 18-20; Berlin, Germany.

Downloads

Published

2024-12-25

Issue

Section

บทความวิจัย (Research Article)