การพยากรณ์หาค่าพารามิเตอร์ที่เหมาะสมของตัวแปรในการเชื่อม TIG ต่อสมบัติเหล็กกล้าไร้สนิม AISI 304 โดยใช้โครงข่ายประสาทเทียม

Authors

  • กิตติ วิโรจรัตนาภาพิศาล อาจารย์, สาขาวิศวกรรมอุตสาหการ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา ตาก, 41 ถนนพหลโยธิน ตำบลไม้งาม อำเภอเมือง จังหวัดตาก 63000
  • อุกฤษฏ์ ธนทรัพย์ทวี อาจารย์, สาขาวิศวกรรมอุตสาหการ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา ตาก, 41 ถนนพหลโยธิน ตำบลไม้งาม อำเภอเมือง จังหวัดตาก 63000
  • ชีวพล นิตย์นรา อาจารย์, สาขาเทคโนโลยีวิศวกรรมเครื่องกล วิทยาลัยเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพรนครเนือ 1518 ถนนประชาราษฎร์ 1 แขวงวงศ์สว่าง เขตบางซื่อ กรุงเทพฯ 10800
  • จิตติวัฒน์ นิธิกาญจนธาร อาจารย์, สาขาวิศวกรรมอุตสาหการ คณะวิศวกรรมศาสตร์และเทคโนโลยี มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน อำเภอเมือง จังหวัดนครราชสีมา 30000
  • พันทิวา พวงสาลี นักวิจัย, ศูนย์เทคโนโลยีโลหะและวัสดุแห่งชาติ สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ, อุทยานวิทยาศาสตร์ประเทศไทย 114 ถนนพหลโยธิน ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

Keywords:

Tig Welding, Tensile Stress, Neural Network Model

Abstract

This project aims to the prediction of optimal parameters in the TIG welding of AISI 304 Stainless steel using an artificial neural network. In the implementation of the project, the TIG welding process was used without filling wire. Tungsten electrodes diameter 1.6 mm and base material of 50 x 150 x 2 AISI 304 stainless steel plate were used in this experiment. The workpieces were formed as butt joint which were welded in flat position. The TIG welding process used 3 levels of welding current at 75, 95 and 115 amperes and 3 levels of welding gas at 10, 12 and 14 liters per minute as well as 3 levels of welding speed at 8, 10 and 12 inches per minute. The experiment was carried out on 3k factorial design and predicted tensile stress values by neural network techniques. According to the results of this research, it was found that the maximum of tensile stress value was obtained with 115 amperes of welding current, 12 liters per minute of welding cover gas and 10 inches per minute of welding speed. Which, the maximum of tensile stress value was 573.472 N/mm2. From the experimental results, it was found that the tensile stress values could be predicted by neural network prediction with decision coefficient that 0.99636 It has a mean squared error (MSE) of 0.2485

References

Kumar A, Sundarrajan S. Effect of welding parameters on mechanical properties and optimization of pulsed TIG welding of Al-Mg-Si alloy. The International Journal of Advanced Manufacturing Technology 2009; 42:118-125

Joseph J, Muthukumaran S. Optimization of activated TIG welding parameters for improving weld joint strength of AISI 4135 PM steel by genetic algorithm and simulated annealing. The International Journal of Advanced Manufacturing Technology 2017;93:23-34

Singh AK, Dey V, Rai RN. Techniques to improveweld penetration in TIG welding (A review). Materials Today: Proceedings 2017;4(2):1252-9.

Shrivas S, Vaidya SK, Khandelwal AK, Vishvakarma AK. Investigation of TIG welding parameters to improve strength. 10th International Conference of Materials Processing and Characterization. Materials Today: Proceedings 2020;26:1897-902.

Reddy GN, VenkataRamana M. Optimization of process parameters in welding of dissimilar steels using robot TIG welding. IOP Conference Series Materials Science and Engineering 2018;330:012096.

Yosefieh M, Shamanian M, Saatchi A. Optimization of the pulsed current gas tungsten arc welding parameters for corrosion resistance of super duplex stainless steel welds using the Taguchi method. Journal of Alloy and Compounds 2011;509(3):782-8.

Mathewa BK, Velmurugan C. Evaluation of TIG welding parameters using statistical methods to optimize the mechanical properties of stainless steel – SS304. AIP Conference Proceedings 2022;2446(1):16006.

Manikandan M, Nageswara RM, Ramanujam R, Ramkumar D, Arivazhagan N, Reddy GM. Optimization of the pulsed current gas tungsten arc welding process parameters for alloy C-276 using the taguchi method. Procedia Engineering 2014;97:767-74.

Pashazadeh H, Gheisari Y, Hamedi M. Statistical modeling and optimization of resistance spot welding process parameters using neural networks and multi-objective genetic algorithm. Journal of Intelligent Manufacturing 2016;27(3):549-59

Ampaiboon A, Lasunon O, Bubphachot B. Optimization and prediction of ultimate tensile strength in metal active gas welding. The Scientific World Journal 2015;2015: 831912.

Naik AB, Reddy AC. Optimization of tensile strength in TIG welding using the Taguchi method and analysis of variance (ANOVA). Thermal Science and Engineering Progress 2018;8:327-39.

Sridhara SNS, Allada SCS, Sai PVS, Banala S, Subbiah R, Marichamy S. Tensile strength performance and optimization of Al 7068 using TIG welding process. Materials Today: Proceedings 2021;45(Pt 2):2017-21.

Khantongkum S, Thanasuptawee U, Promdan W, Siwadamrongpong S. Mechanical properties of weld joint by friction stir welding on aluminum alloy 5083. Proceedings of 10th International Conference on Mechatronics and Control Engineering (ICMCE 2021); 2021 Jul 26-28; Lisbon, Portugal. Singapore: Springer; 2023. p. 37-42.

Teng-Hongcharoen S, Promkochasut C. Welding process. Bangkok: Academic Support Center; 2013. (In Thai)

Downloads

Published

2023-08-28

Issue

Section

บทความวิจัย (Research Article)