การพัฒนาแบบจำลองทางคณิตศาสตร์เพื่อเลือกสารทำงานของระบบปั๊มความร้อนสำหรับงานอบแห้งอุณหภูมิปานกลาง

Authors

  • สรวิศ สอนสารี อาจารย์, คณะเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยราชภัฏพิบูลสงคราม 156 หมู่ 5 ตำบลพลายชุมพล จังหวัดพิษณุโลก 65000
  • สมชาย เจียจิตต์สวัสดิ์ อาจารย์, หน่วยวิจัยพลังงานสะอาด คณะวิทยาศาสตร์ มหาวิทยาลัยนเรศวร 99 หมู่ 9 ตำบลท่าโพธิ์ จังหวัดพิษณุโลก 65000
  • วิสุทธิ์ แช่มสะอาด อาจารย์, วิทยาลัยพลังงานทดแทนและสมาร์ตกริดเทคโนโลยี มหาวิทยาลัยนเรศวร 99 หมู่ 9 ตำบลท่าโพธิ์ จังหวัดพิษณุโลก 65000

Keywords:

Mathematical model, Heat pump and Working fluids

Abstract

The purpose of this research was to develop a mathematical model for selecting the working fluids of the heat pump system for medium-temperature drying applications. In this study, seven variables consisted of (1) Mass of refrigerant per unit heat output (MPH), (2) Vapor volume flow rate, (3) Displacement volume, (4) Discharge pressure, (5) Discharge temperature, (6) Pressure ratio, and (7) Coefficient of performance of heat pump gif.latex?(COP_{VCHP}). These variables were used to compare 15 substances used in the heat pump systems. The results showed that when the condenser temperature increased, the variables (1) to (6) tended to increase with the difference in temperature and pressure. As for variable (7), it tends to decrease with increasing temperature and pressure on the condenser. Moreover, the results showed that when the environmental impact of both low ozone depletion potential (ODP), low global warming potential (GWP), as well as safety (non-flammable and non-toxic) of use is considered. R-1234ze(E) was found to be the most suitable substance because it has the least impact on the environment and has a high gif.latex?COP_{VCHP}  compared to other substances. Then, followed by R-1234yf, R-1234ze(Z), R-1233zd(E), R-290, R-600, R-245ca, R-245fa, and R-236fa, respectively.

References

Department of alternative energy development and efficiency, Ministry of energy. Project to improve solar energy potential map from satellite imagery for Thailand [Internet]. 2017 [cited 2021 March 19]. Available from: https://www.dede.go.th/download/ OpenBigData/Solar_Map_1_2560.pdf

Department of alternative energy development and efficiency, Ministry of energy. Alternative energy development plan 2018 – 2037 (AEDP2018) [Internet]. 2018 [cited 2021 March 19]. Available from: https://www.dede.go.th/download/Plan_62/20201021_ TIEB_AEDP2018.pdf

Sonsaree S, Jiajitsawat S, Thongsan S. Cooling water flow rate affecting the efficiency of a solar photovoltaic-thermal hybrid system. Kasem Bundit Engineering Journal 2021;11(1):74-90. (In Thai)

Pachanatong M, Suttha, W, Panyathitipong W. Household heat use to improve sweet tamarind quality. RMUTP Research Journal 2018;12(1):102-12. (In Thai)

Lim H, Kim C, Cho Y, Kim M. Energy saving potentials from the application of heat pipes on geothermal heat pump system. Applied Thermal Engineering 2017;126:1191-8.

Wu P, Wang Z, Li X, Xu Z, Yang Y, Yang Q. Energy-saving analysis of air source heat pump integrated with a water storage tank for heating applications. Building and Environment 2020;180:107029.

Wu X, Xing Z, He Z, Wang X, Chen W. Performance evaluation of a capacity-regulated high temperature heat pump for waste heat recovery in dyeing industry. Applied thermal engineering 2016;93:1193-201.

Zhao Z, Xing Z, Hou F, Tian Y, Jiang S. Theoretical and experimental investigation of a novel high temperature heat pump system for recovering heat from refrigeration system. Applied Thermal Engineering 2016;107:758-67.

Wu Z, Wang X, Sha L, Li X, Yang X, Ma X, et al. Performance analysis and multi-objective optimization of the high-temperature cascade heat pump system. Energy 2021;223:120097.

Mota-Babiloni A, Navarro-Esbrí J, Makhnatch P, Molés F. Refrigerant R-32 as lower GWP working fluid in residential air conditioning systems in Europe and the USA. Renewable and Sustainable Energy Reviews 2017;80:1031-42.

Juhasz JR. Novel working fluid, HFO-1336mzz (E), for use in waste heat recovery application. 12th IEA Heat Pump Conference; 2017. p. 1-10.

Zühlsdorf B, Jensen JK, Elmegaard B. Heat pump working fluid selection—economic and thermodynamic comparison of criteria and boundary conditions. International Journal of Refrigeration 2019;98:500-13.

Frutiger J, Zühlsdorf B, Elmegaard B, Abildskov J, Sin G. Reverse engineering of working fluid selection for industrial heat pump based on Monte Carlo sampling and uncertainty analysis. Industrial & Engineering Chemistry Research 2018;57(40):13463-77.

Fan X-W, Zhang X-P, Ju F-J, Wang F. Theoretical study of heat pump system using CO2/dimethylether as refrigerant. Thermal Science 2013;17(5):1261-8.

Chaichana C, Aye L, Charters WW. Natural working fluids for solar-boosted heat pumps. International Journal of refrigeration 2003;26(6):637-43.

Sonsaree S, Asaoka T, Jiajitsawat S, Aguirre H, Tanaka K. VCHP-ORC power generation from low-grade industrial waste heat combined with solar water heating system: Power generation and CO2 emission in industrial estate of Thailand. Cogent Engineering 2017;4(1):1-24.

Chaiyat N, Chaichana C. Working fluid selection for geothermal heat pump. Engineering Journal Chiang Mai University 2006;13:27-32. (In Thai)

NIST. REFPROP Mini, Thermodynamic properties of refrigerants and refrigerant mixtures software; 2000.

Fannou JC, Rousseau C, Lamarche L, Kajl S. A comparative performance study of a direct expansion geothermal evaporator using R-410A and R-407C as refrigerant alternatives to R-22. Applied Thermal Engineering 2015;82:306-17.

Arora A, Kaushik S. Theoretical analysis of a vapour compression refrigeration system with R-502, R-404A and R-507A. International journal of refrigeration 2008;31(6):998-1005.

ANSI/ASHRAE Standard 34–2016, Designation and safety classification of refrigerants. ASHRAE Atlanta; 2016.

Saleh B. Parametric and working fluid analysis of a combined organic Rankine-vapor compression refrigeration system activated by low-grade thermal energy. Journal of advanced research 2016;7(5):651-60.

Latrash F, Agnew B, Al-Weshahi M, Eshoul N, editors. Optimal selection of using fluids (HFC, HCFC, HFC) for an organic Rankine cycle utilizing a low temperature geothermal energy source. 5th International Conference on Environment Science and Engineering; 2015. p. 48-54.

Chaiyat N. Performance analysis of an absorption heat transformer with assisted vapor compression heat pump [Doctor of philosophy in energy engineering]. Chiang Mai: Chiang Mai University; 2011.

Downloads

Published

2021-12-24

Issue

Section

บทความวิจัย (Research Article)