อัตราการไหลเวียนของน้ำระบายความร้อนที่ส่งผลต่อประสิทธิภาพการทำงานของระบบผลิตไฟฟ้าและน้ำร้อนพลังงานแสงอาทิตย์

Authors

  • สรวิศ สอนสารี อาจารย์, คณะเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยราชภัฏพิบูลสงคราม 156 หมู่ 5 ตำบลพลายชุมพล จังหวัดพิษณุโลก 65000
  • สมชาย เจียจิตต์สวัสดิ์ อาจารย์, หน่วยวิจัยพลังงานสะอาด คณะวิทยาศาสตร์ มหาวิทยาลัยนเรศวร 99 หมู่ 9 ตำบลท่าโพธิ์ จังหวัดพิษณุโลก 65000
  • สหัถยา ทองสาร อาจารย์, วิทยาลัยพลังงานทดแทนและสมาร์ตกริดเทคโนโลยี มหาวิทยาลัยนเรศวร 99 หมู่ 9 ตำบลท่าโพธิ์ จังหวัดพิษณุโลก 65000

Keywords:

Performance, Solar Photovoltaic-Thermal Hybrid System

Abstract

The purpose of this research was to study the cooling water flow rate affecting the performance of the solar photovoltaic-thermal hybrid system. A multicrystalline solar cell of Trinasolar model TSM-345PE15H was used to test the power generation in combination with a cooling water system installed under the solar panel. The cooling system consists of 6 copper pipes, 3/8” diameter with a length of 1,815 mm It is connected with 2 manifolds, 7/8” diameter with a length of 799 mm. The results found that, as the cooling water flow rate between 25 and 250 LPH, the solar cell efficiency tends to increase as the flow rate increases. The solar panel has a maximum efficiency of 12.55% when cooled water has a flow rate of 100 LPH and the system can increase the hot water temperature from 29.10 °C to 51.29 °C. Moreover, amount of heat produced was 3894.41 kJ and the amount of electricity produced was 11.37 kWh. 

References

Department of Alternative Energy Development and Efficiency, Ministry of Energy. Project to improve solar energy potential map from satellite imagery for Thailand [Internet]. 2017. [cited 2021 March 19]. Available from: https://www.dede.go.th/ download/OpenBigData/Solar_Map_1_2560.pdf

Department of Alternative Energy Development and Efficiency, Ministry of Energy. Alternative energy development plan 2018 – 2037 (AEDP2018) [Internet]. 2018. [cited 2021 March 19]. Available from: https://www.dede.go.th/download/Plan_62/ 20201021_TIEB_AEDP2018.pdf

Thawonngamyingsakul C, Kiatsiriroat T. Potential of a solar organic rankine cycle with evacuated-tube solar collectors as heat source for power generation in Thailand. Energy Science and Technology 2012;4(2):25-35.

Sonsaree S, Asaoka T, Jiajitsawat S, Aguirre H, Tanaka K. A small-scale solar Organic Rankine Cycle power plant in Thailand: Three types of non-concentrating solar collectors. Solar energy 2018;162:541-60.

Duck BC, Fell CJ, Anderson KF, Sacchetta C, Du Y, Zhu Y. Determining the value of cooling in photovoltaics for enhanced energy yield. Solar Energy 2018;159:337-45.

Aldossary A, Mahmoud S, Al-Dadah R. Technical feasibility study of passive and active cooling for concentrator PV in harsh environment. Applied thermal engineering 2016;100:490-500.

Skoplaki E, Palyvos JA. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar energy 2009;83(5):614-24.

Kaldellis JK, Kapsali M, Kavadias KA. Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece. Renewable Energy 2014;66:612-24.

Kerdsangsuriyong P, Thepa S, Tunlasakun K, Songprakop R. An improvement of photovoltaic thermal using cooled water with compound parabolic concentrator. The 10th National Kasetsart University Kamphaeng Saen Conference; 2013. p. 292-9. (In Thai)

Sichamnan S, Chompookham T, Sampan R. Efficiency enhancement of solar panels using copper mesh wick heat pipe. UBU Engineering Journal 2016;9(1):11-22. (In Thai)

Pootong S, Vimanjan V, Chantawong P. Improvement of photovoltaic cell efficiency by using water mist to reduce photovoltaic cell temperature. Graduate School Conference; 2018. p. 867-75. (In Thai)

Tewata A, Sriudom Y. An experimental study on increasing efficiency of solar cell modules by flat heat pipe cooling. RMUTP Research Journal 2018;12(2):83-94. (In Thai)

Peng Z, Herfatmanesh MR, Liu Y. Cooled solar PV panels for output energy efficiency optimisation. Energy Conversion and Management 2017;150:949-55.

Prakash J. Transient analysis of a photovoltaic-thermal solar collector for co-generation of electricity and hot air/water. Energy Conversion and Management. 1994;35(11):967-72.

Spertino F, D’angola A, Enescu D, Di Leo P, Fracastoro GV, Zaffina R. Thermal–electrical model for energy estimation of a water cooled photovoltaic module. Solar Energy 2016;133:119-40.

Herrando M, Ramos A, Zabalza I, Markides CN. A comprehensive assessment of alternative absorber-exchanger designs for hybrid PVT-water collectors. Applied energy 2019;235:1583-602.

Al-Waeli AH, Chaichan MT, Kazem HA, Sopian K. Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors. Energy Conversion and Management 2017;148:963-73.

Rittidej S. Heat pipe technology. Mahasarakham: Mahasarakham University Press; 2011. (In Thai)

Sun V, Asanakham A, Deethayat T, Kiatsiriroat T. Increase of power generation from solar cell module by controlling its module temperature with phase change material. Journal of Mechanical Science and Technology 2020;34:2609-18.

IEA-ETSAP. Solar heat for industrial processes technology brief. International Energy Agency (IEA) and Energy Technology Systems Analysis Programme (ETSAP) [Internet]. 2015 [cited 2021 March 19]. Available from: http://www.inship.eu/docs/sh5.pdf

Downloads

Published

2021-04-30

Issue

Section

บทความวิจัย (Research Article)