Analysis of Electrical Properties of mangosteen pulp and detection of its Quality using X-frequency sensor system
Keywords:
Dielectric properties, Translucent flesh disorder, Non-destructive systemAbstract
This paper introduces the electrical properties measurement of translucent and normal flesh mangosteens in the frequency range 10-11 GHz. The measured data were then used to model the mangosteen for free-space technique measurement simulation. The proposed system comprises a transmitting and a receiving antenna, a high-frequency dielectric resonator oscillator, a frequency mixer, a stepping motor to rotate the mangosteen during measurement, a power detector, an analog-to-digital converter, and a microcontroller. The concept of this system is to transmit signal to mangosteen and receive the reflected signal from mangosteen at varied angle 0 to 360 degrees around it in azimuth plane. The reflected signal is then mixed with a local oscillator to produce intermediate frequency for being the reference level to detect translucent flesh within mangosteen. The measured dielectric constant and dielectric loss factor at the frequency of 10.525 GHz of the translucent flesh were 45.08 and 28.32, respectively, while they were 40.43 and 25.89, respectively for the ordinary flesh. The prototype system was validated by measuring 54 mangosteen samples. The measured data were then normalized to reduce the effect of mangosteen shape. The calculated standard deviation was used for decision-making in classification process which the average standard deviations of translucent and normal flesh were 0.11 and 0.03, respectively. The threshold level for mangosteen classification was 0.085. The classification accuracy achieved 84.4%. Thus, the sensor system is efficient and suitable for the application.
References
Econ digest, (2021, 25 Aug.). Export value of Thai mangosteens in 2021 is expected to grow 14.6-18.8%, Kasikorn Research Center [Online]. Available: http://www.kasikornresearch.com/en/analysis/k-social-media/Pages/mangos teen-FB-03-09-21.aspx.
W. M. Aizat, F. H. Ahmad-Hashim, and S. N. S. Jaafar, “Valorization of mangosteen, the queen of Fruits, and new advances in postharvest and in food and engineering applications: a review, Journal of Advanced Research, vol. 20, pp. 61–70, 2019
V. Suwanseree, S. Phansiri, C. Nontaswatsri, and C. Yapwattanaphun, Mutation breeding to increase genetic diversity in mangosteen,” Proceedings of International Symposium on Tropical Fruits, Ho Chi Minh, Vietnam, 24-26 September 2019, pp. 48-61.
A. Terdwongworakul, (2015, 21 Oct.). Translucent of mangosteen [Online] Kasetsart University Research and Development Institute, Available: https://www3.rdi.ku.ac.th/?p=21690.
Rueso district agriculture office, “The gumboge and translucent disorder mangosteen,” Agriculture News, vol. 013, pp. 1-4, 2013.
Y. Theapparat, S. Khongthong, P. Rodjan, K. Lertwittayanon, and D. Faroongsarng, “Physicochemical properties and in vitro antioxidant activities of pyroligneous acid prepared from brushwood biomass waste of mangosteen, durian, rambutan, and langsat,” Journal of Forestry Research, vol. 30, no. 3 pp.1139–1148, 2019.
P. Chaisrichonlathan, “Research and development on automatic quality grading machine of mangosteen using ultrasonic specific gravity sensor – based control system,” Research report, Department of Agriculture, Bangkok, 2016.
D. D. Matra, T. Kozaki, K. Ishii, R. Poerwanto, and E. Inoue, “Comparative transcriptome analysis of translucent flesh disorder in mangosteen (Garcinia mangostana L.) fruits in response to different water regimes,” PLOS ONE, vol. 14, no. 7, pp. 1-20, 2019.
J. C. Caicedo-Eraso, F. O. Díaz-Arango, and A. Osorio-Alturo, “Electrical impedance spectroscopy applied to quality control in the food industry,” Ciencia y Tecnología Agropecuaria, vol.21, no. 1, pp.1-20, 2020.
C. M. O. Muvianto, M.G.R. Afrizal, S. Ariessaputra, K. Yuniarto, S. M. A. Sasongko, B. Darmawan, and S. Ch, “Mangosteen flesh condition detector based on microwave non-destructive technique using spiral resonator sensor’s,” Jurnal Rekayasa Elektrika, vol.18, no.1, pp.28-34, 2022.
P Leekul, and M Krairiksh, “Measured natural frequencies of mangosteens,” 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), pp.334-335, 2018.
P Leekul, and M Krairiksh, “A sensor for fruit classification using doppler radar,” 2018 IEEE Conference on Antenna Measurements & Applications (CAMA), pp.1-2, 2018.
H. N. Dao, C. Phongcharoenpanich and M. Krairiksh, “Approximated backscattered wave models of a Lossy concentric dielectric sphere for fruit characterization,” Electronics 2022, 11, 1521.
D. M. Pozar, “Microwave engineering,” 4th ed. John Wiley & Sons. USA, 2012.
C. Wongs-Aree and S. Noichinda, “Glycolysis fermentative by-products and secondary metabolites involved in plant adaptation under Hypoxia during pre- and postharvest,” Hypoxia and Anoxia. Intech Open, pp. Dec. 12, 2018. doi:10.5772/intechopen.80226.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Faculty of Industrial Technology, Suan Sunandha Rajabhat University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของคณะเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยราชภัฎสวนสุนันทา
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยราชภัฎสวนสุนันทา และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว

