Development of Regression Process for Storage Time of Natural Rubber Latex Classification using Microwave frequencies
Keywords:
Storage time of natural latex, Dielectric properties, Microwave transmission, Artificial neural networksAbstract
This work presents a low complex time storage measurement of natural latex using the microwave transmission technique. The transmission power obtained from natural latex measurements are simulated and then analyzed by artificial neural networks to classify storage time. The storage time of natural latex was analyzed by continuously measuring the dielectric properties for 12 hours. Then they were used to model in simulation. In the simulation, two pairs of double frequencies transmitting and receiving antennas: the first pair at the frequencies of 10.2 and 10.4 GHz and the second one at the frequencies of 10.2 and 10.6 GHz, were used to transmit and receive the microwave signals through natural latex. The transmission power, |S12|, |S21|, |S34|, and |S43| were used in training the artificial neural networks to develop the accurate decision-making process. The optimum structure of artificial neural networks consisted of four input nodes, eight hidden nodes, and one output node with the learning rate 0.1 that provided 97.62% accuracy. It shows that the efficiency of the presented decision-making process with artificial neural networks is suitable for storage time classification of natural latex application.
References
Rubber Intelligence Unit, (5 November 2021). Export statistics - natural rubber [online], Available: http://rubber.oie.go.th/ImExThaiByProduct.aspx?pt=ex.
S. S. Ochigbo, R. A. Lafia-Araga and M. A. T. Suleiman, “Comparison of two creaming methods for preparation of natural rubber latex concentrates from field latex,” African Journal of Agricultural Research, vol. 6, no.12, pp. 2916-2619, 18 June 2011.
N. wongwattana, S. Rittiron, R. and Lim, C. H. “The rapid determination of volatile fatty acid number in para rubber latex using Fourier transform-near infrared spectroscopy based on quantication and discrimination model,” Journal of Innovative Optical Health Sciences, vol. 8, no.5, pp. 1-9, 2015.
A. Parichkul, and P. Saikhwan, “The use of pasteurization to control microbial growth in rubber latex,” Journal of Food Science and Agricultural Technology, vol.1, no.1, pp.131-135, 2015.
P. Tatsanakul, A. N. Wichien and P. Pimrat, “Innovation of the production of TMTD/ZnO-free latex,” Journal of Rubber, vol.26 (electronic), pp.2-10, September 2016.
A. A. Hassan, M. Singh, W. Z. Saad, and R. Mohamad, “Efficiency of commercial biological compounds as anticoagulant agents in natural rubber latex,” Journal of Rubber Research, vol.18, no. 2, pp. 72-86, 2015.
S. Y. Lee, Y. X. Heng, Y. T. Q. Ling, D. T. C. Ang, and K. L. Mok, “Non-cytotoxic palm-based polymeric surfactant as a green stabilizer in natural rubber latex,” Journal of Rubber Research, vol.24, pp.423–433, July 2021.
D. M. Pozar, “Microwave engineering,” 4th ed. John Wiley & Sons. USA, 2012.
N. Sresungsuwan and N. Hansupalak, “Prediction of mechanical properties of compatibilized styrene/natural-rubber blend by using reaction conditions: central composite design vs. artificial neural networks,” Journal Applied Polymer Science, pp.356-365, 2013.
P. Leekul, P. Wongsiritorn, and P. Chaisaeng, “Development of humidity monitoring system in greenhouse with electromagnetic X-band and artificial neural networks,” Progress In Electromagnetics Research M, vol.100, pp.93–103, 2021.
Amorndej Puttipipatkajorn, and Amornrit Puttipipatkajorn “Development of calibration models for rapid determination of moisture content in rubber sheets using portable near-infrared spectrometers,” Journal of Innovative Optical Health Sciences, vol. 13, no.2, pp.1-12, 2020.
C. Zhao, G. Wu, and Y. Li, “Measurement of water content of oil-water two-phase flows using dual frequency microwave method in combination with deep neural network,” Measurement, vol.131, pp.92–99, 2019.
J. Zhang, D. Du, Y. Bao, J. Wang, and Z. Wei, “Development of multifrequency-Swept microwave sensing system for moisture measurement of sweet corn with deep neural network,” IEEE Transaction on Instrumentation and Measurement, vol.69, no.9, , pp.6446-6454, September 2020.
H. A. Hassan, M. H. Essa, and A. Yahya, “Performance comparison of linear multiuser detectors and neural network detector for DS/CDMA Systems in AWGN,” in 2015 Tenth International Conference on Computer Engineering & Systems (ICCES), Cairo Egypt, pp.307-313 ,23-24 Dec. 2015
S. Haykin, “Neural Networks and Learning Machines” 3rd, Prentice Hall: USA, 2008.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Faculty of Industrial Technology, Suan Sunandha Rajabhat University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของคณะเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยราชภัฎสวนสุนันทา
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยราชภัฎสวนสุนันทา และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว

