Towards a predictor for CO2 emission using regression analysis and an artificial neural network Sarinya Sala-ngam
Keywords:
CO2 emission prediction, artificial neural network, regression analysis, forecasting model, CO2 emission in transportation sectorAbstract
The purpose of this research is to demonstrate an approach for predicting carbon dioxide (CO2) emissions in Thailand which caused form sector of industry, transportation, economic and power generation. This research focuses on applying regression analysis and an artificial neural network with the multi-layer feedforward networks trained using the back-propagation algorithm. The causes of CO2 emissions in transport and economic sector such as increasing volume of vehicles, petroleum products consumption, CO2 emission, Thailand population and GDP were investigated and collected in this study. In order to design the predictive model of CO2 emissions, the data obtained were analyzed using regression analysis with 95% confidence interval. Also, an artificial neural network with neuron architecture: 4-12-1 (input-hidden-output), transfer function: positive linear, learning rate: 0.02 and 1000 Epoch training with MALAB was used to achieve designing the accurately predicting model for CO2 emissions. The results demonstrated that an artificial neural network has the ability to predict CO2 emissions more efficiently and accurately than the regression analysis method with 6 times considered by the value of the mean absolute deviation (MAD). Therefore, an artificial neural network with the multi-layer, back-propagation and feedforward network is the appropriate approach for generating the predictive model of CO2 emission.
References
C. Pratum, "Feasibility Study of Carbon Dioxide Recycling Using a Biological Wastewater Treatment System for Industrial Sources," Journal of Environmental Management, vol. 11, no. 2, pp. 106-133, 2015.
P. Bunprom and J. Kaewdam, "A study of Carbondaioxide Gas Emission from alcohol beverage industrial process," Suddhiparitad, vol. 25, no. 77 (September -December), pp. 7-18, 2011.
Energy Policy and Planning Office (EPPO), Ministry of Energy, " CO2 Emission by Energy Type and Sector.," Bangkok, 2559.
Energy Policy and Planning Office (EPPO), Ministry of Energy, " CO2 Emission by Energy Type and Sector.," Bangkok, 2559.
P. Wongwut, “CO2 Emission from Energy Consumption in Thailand” Thesis, Bachelor of Science, King Mongkut's Institute of Technology, 2536.
Climatogical Center (2022, March). [Online]. Available: http://www.climate. tmd.go.th/content/file/2104
Y. Panmanee, C. Jaiphet and A. Boonpoke, "Greenhouse gas emission from road transportation sector: A case study of transportation cooperative service," Naresuan Phayao Journal, vol. 6, no. 3, pp. 231-236, 2013.
T. Limanond, S. Uttra, C. Chermkhunthod and A. SriKaew, "Comparing the Performance of Automobile Ownership Model: By Multiple Linear Regression Analysis Method and Back-Propagation Learning of ANN Method," in The 3rd Atrans Symposium Student Chapter Session, Bangkok, 2010.
W. Yu, F. Zhao, H. Xu, M. Xu, W. Yang, K. Boonsiah, and S. Prabakaran, “Predictive control of CO2 emissions from a grate boiler based on fuel nature structures using intelligent neural network and Box-Behnken design,” in the 10th International Conference on Applied Energy, Hong Kong, China, 22-25 August, pp.364-369, 2018.
Statistics and research methodology for information technology. (2019, August 17) Regression Analysis. [Online]: Available:http://home.dsd.go.th/kamphaengkkam/km/inforinform/RESECARCH/000Regression.pdf
A. Sarasiri. (2019, August). An Artificial Neuron Network of Technique. [Online]. Available:https://sites.google.com/site/powerpow/phost-him/thekhnikhkarreiy nruphunthankthekhnikhkarreiynruphu
An integral element of the Ministry of Energy, the Energy Policy, and Planning Office (EPPO). (2019, August). Energy Statistics of Thailand. [Online]. Available: http://www.pagemakerth.com/eppostat2018/#p=9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Faculty of Industrial Technology, Suan Sunandha Rajabhat University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของคณะเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยราชภัฎสวนสุนันทา
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยราชภัฎสวนสุนันทา และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว