From fungi to pharmacy: Applied technologies in psilocybin production and its therapeutic applications
DOI:
https://doi.org/10.55674/cs.v18i1.264689Keywords:
Psilocybin, Synthetic Biology, Psychedelic-Assisted Therapy, Major Depressive DisorderAbstract
Psilocybin, a naturally occurring tryptamine alkaloid found in over 200 species of fungi, has emerged as a focal point in the modern revival of psychedelic science. Once relegated to the margins of psychopharmacology due to its association with counterculture and strict legal restrictions, psilocybin is now undergoing a scientific renaissance. This transformation is driven by its unique pharmacological profile and promising therapeutic potential across a range of psychiatric and neurodegenerative conditions. This review systematically summarizes the research progress on psilocybin, covering its natural biosynthetic pathways, production technologies, mechanisms of action, and clinical applications. We first introduced its four-enzyme synthesis pathway in Psilocybe fungi and explored how synthetic biology can revolutionize its production methods through microbial heterologous expression. Pharmacologically, psilocybin acts as a prodrug that is converted in vivo into its active metabolite, dephosphorylated psilocybin (psilocin), which functions as a partial agonist of the 5-HT2A receptor. This activates neuroplasticity pathways such as BDNF and mTOR, thereby producing rapid and sustained antidepressant effects. Despite its therapeutic promise, significant challenges remain. These include methodological limitations such as functional unblinding in clinical trials, lack of diversity in study populations, and evolving regulatory frameworks. Looking forward, the integration of precision psychiatry, synthetic biology, and novel trial designs will be critical in translating psilocybin from a promising compound into a mainstream therapeutic agent. This review aims to provide a foundational understanding of psilocybin’s scientific basis and its potential to reshape modern psychiatric care, we uniquely bridge the gap between upstream biosynthetic engineering and downstream clinical efficacy, providing a holistic roadmap for the drug’s development from fungi to pharmacy.
GRAPHICAL ABSTRACT

HIGHLIGHTS
- Microbial biosynthesis enables scalable, high-titer psilocybin production.
- Therapeutic action is driven by 5-HT2A receptor-mediated neuroplasticity.
- Demonstrates rapid and sustained antidepressant efficacy in clinical trials.
References
Nichols, D. E. (2020). Psilocybin: From ancient magic to modern medicine. The Journal of Antibiotics, 73(10), 679–686. https://doi.org/10.1038/s41429-020-0311-8
Araújo, A. M., Carvalho, F., Bastos, M. de L., Guedes de Pinho, P., & Carvalho, M. (2015). The hallucinogenic world of tryptamines: An updated review. Archives of Toxicology, 89(8), 1151–1173. https://doi.org/10.1007/s00204-015-1513-x
Rush, A. J., Sackeim, H. A., Conway, C. R., Bunker, M. T., Hollon, S. D., Demyttenaere, K., Young, A. H., Aaronson, S. T., Dibué, M., Thase, M. E., & McAllister-Williams, R. H. (2022). Clinical research challenges posed by difficult-to-treat depression. Psychological Medicine, 52(3), 419–432. https://doi.org/10.1017/S0033291721004943
de Vos, C. M. H., Mason, N. L., & Kuypers, K. P. C. (2021). Psychedelics and Neuroplasticity: A Systematic Review Unraveling the Biological Underpinnings of Psychedelics. Frontiers in Psychiatry, 12, 724606. https://doi.org/10.3389/fpsyt.2021.724606
Doss, M. K., Považan, M., Rosenberg, M. D., Sepeda, N. D., Davis, A. K., Finan, P. H., Smith, G. S., Pekar, J. J., Barker, P. B., Griffiths, R. R., & Barrett, F. S. (2021). Psilocybin therapy increases cognitive and neural flexibility in patients with major depressive disorder. Translational Psychiatry, 11(1), 574. https://doi.org/10.1038/s41398-021-01706-y
Goodwin, G. M., Aaronson, S. T., Alvarez, O., Arden, P. C., Baker, A., Bennett, J. C., Bird, C., Blom, R. E., Brennan, C., Brusch, D., Burke, L., Campbell-Coker, K., Carhart-Harris, R., Cattell, J., Daniel, A., DeBattista, C., Dunlop, B. W., Eisen, K., Feifel, D., … Malievskaia, E. (2022). Single-Dose Psilocybin for a Treatment-Resistant Episode of Major Depression. New England Journal of Medicine, 387(18), 1637–1648.
https://doi.org/10.1056/NEJMoa2206443
Lowe, H., Toyang, N., Steele, B., Valentine, H., Grant, J., Ali, A., Ngwa, W., & Gordon, L. (2021). The Therapeutic Potential of Psilocybin. Molecules, 26(10), 2948. https://doi.org/10.3390/molecules26102948
Reiff, C. M., Richman, E. E., Nemeroff, C. B., Carpenter, L. L., Widge, A. S., Rodriguez, C. I., Kalin, N. H., McDonald, W. M., & and the Work Group on Biomarkers and Novel Treatments, a Division of the American Psychiatric Association Council of Research. (2020). Psychedelics and Psychedelic-Assisted Psychotherapy. American Journal of Psychiatry, 177(5), 391–410. https://doi.org/10.1176/appi.ajp.2019.19010035
Carhart-Harris, R. L., Roseman, L., Bolstridge, M., Demetriou, L., Pannekoek, J. N., Wall, M. B., Tanner, M., Kaelen, M., McGonigle, J., Murphy, K., Leech, R., Curran, H. V., & Nutt, D. J. (2017). Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms. Scientific Reports, 7(1), 13187. https://doi.org/10.1038/s41598-017-13282-7
Carhart, -Harris Robin, Giribaldi, B., Watts, R., Baker, -Jones Michelle, Murphy, -Beiner Ashleigh, Murphy, R., Martell, J., Blemings, A., Erritzoe, D., & Nutt, D. J. (2021). Trial of Psilocybin versus Escitalopram for Depression. New England Journal of Medicine, 384(15), 1402–1411. https://doi.org/10.1056/NEJMoa2032994
Ly, C., Greb, A. C., Cameron, L. P., Wong, J. M., Barragan, E. V., Wilson, P. C., Burbach, K. F., Zarandi, S. S., Sood, A., Paddy, M. R., Duim, W. C., Dennis, M. Y., McAllister, A. K., Ori-McKenney, K. M., Gray, J. A., & Olson, D. E. (2018). Psychedelics Promote Structural and Functional Neural Plasticity. Cell Reports, 23(11), 3170–3182. https://doi.org/10.1016/j.celrep.2018.05.022
[Calder, A. E., & Hasler, G. (2023). Towards an understanding of psychedelic-induced neuroplasticity. Neuropsychopharmacology, 48(1), 104–112. https://doi.org/10.1038/s41386-022-01389-z
Vargas, M. V., Dunlap, L. E., Dong, C., Carter, S. J., Tombari, R. J., Jami, S. A., Cameron, L. P., Patel, S. D., Hennessey, J. J., Saeger, H. N., McCorvy, J. D., Gray, J. A., Tian, L., & Olson, D. E. (2023). Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors. Science, 379(6633), 700–706. https://doi.org/10.1126/science.adf0435
Olson, D. E. (2022). Biochemical Mechanisms Underlying Psychedelic-Induced Neuroplasticity. Biochemistry, 61(3), 127–136.
https://doi.org/10.1021/acs.biochem.1c00812
Haikazian, S., Chen-Li, D. C. J., Johnson, D. E., Fancy, F., Levinta, A., Husain, M. I., Mansur, R. B., McIntyre, R. S., & Rosenblat, J. D. (2023). Psilocybin-assisted therapy for depression: A systematic review and meta-analysis. Psychiatry Research, 329, 115531.
https://doi.org/10.1016/j.psychres.2023.115531
Raison, C. L., Sanacora, G., Woolley, J., Heinzerling, K., Dunlop, B. W., Brown, R. T., Kakar, R., Hassman, M., Trivedi, R. P., Robison, R., Gukasyan, N., Nayak, S. M., Hu, X., O’Donnell, K. C., Kelmendi, B., Sloshower, J., Penn, A. D., Bradley, E., Kelly, D. F., … Griffiths, R. R. (2023). Single-Dose Psilocybin Treatment for Major Depressive Disorder: A Randomized Clinical Trial. JAMA, 330(9), 843–853.
https://doi.org/10.1001/jama.2023.14530
Aaronson, S. T., van der Vaart, A., Miller, T., LaPratt, J., Swartz, K., Shoultz, A., Lauterbach, M., Sackeim, H. A., & Suppes, T. (2024). Single-Dose Synthetic Psilocybin With Psychotherapy for Treatment-Resistant Bipolar Type II Major Depressive Episodes: A Nonrandomized Open-Label Trial. JAMA Psychiatry, 81(6), 555–562. https://doi.org/10.1001/jamapsychiatry.2023.4685
Mitchell, J. M., Bogenschutz, M., Lilienstein, A., Harrison, C., Kleiman, S., Parker-Guilbert, K., Ot’alora G., M., Garas, W., Paleos, C., Gorman, I., Nicholas, C., Mithoefer, M., Carlin, S., Poulter, B., Mithoefer, A., Quevedo, S., Wells, G., Klaire, S. S., van der Kolk, B., Doblin, R. (2021). MDMA-assisted therapy for severe PTSD: A randomized, double-blind, placebo-controlled phase 3 study. Nature Medicine, 27(6), 1025–1033. https://doi.org/10.1038/s41591-021-01336-3
Gukasyan, N., Davis, A. K., Barrett, F. S., Cosimano, M. P., Sepeda, N. D., Johnson, M. W., & Griffiths, R. R. (2022). Efficacy and safety of psilocybin-assisted treatment for major depressive disorder: Prospective 12-month follow-up. Journal of Psychopharmacology, 36(2), 151–158. https://doi.org/10.1177/02698811211073759
Adams, A. M., Kaplan, N. A., Wei, Z., Brinton, J. D., Monnier, C. S., Enacopol, A. L., Ramelot, T. A., & Jones, J. A. (2019). In vivo production of psilocybin in E. coli. Metabolic Engineering, 56, 111–119. https://doi.org/10.1016/j.ymben.2019.09.009
Keller, M. R., McKinney, M. G., Sen, A. K., Guagliardo, F. G., Hellwarth, E. B., Islam, K. N., Kaplan, N. A., Gibbons, W. J., Kemmerly, G. E., Meers, C., Wang, X., & Jones, J. A. (2025). Psilocybin biosynthesis enhancement through gene source optimization. Metabolic Engineering, 91, 119–129. https://doi.org/10.1016/j.ymben.2025.04.003
Cavanna, F., Muller, S., de la Fuente, L. A., Zamberlan, F., Palmucci, M., Janeckova, L., Kuchar, M., Pallavicini, C., & Tagliazucchi, E. (2022). Microdosing with psilocybin mushrooms: A double-blind placebo-controlled study. Translational Psychiatry, 12(1), 307.
https://doi.org/10.1038/s41398-022-02039-0
Xenakis, S. N., Shannon, S.M. (2024). What is needed for the roll-out of psychedelic treatments? Current Opinion in Psychiatry, 37(4), 277-281. https://doi.org/10.1097/YCO.0000000000000946
Passie, T., Seifert, J., Schneider, U., & Emrich, H. M. (2002). The pharmacology of psilocybin. Addiction Biology, 7(4), 357–364.
https://doi.org/10.1080/1355621021000005937
Sharma, P., Nguyen, Q. A., Matthews, S. J., Carpenter, E., Mathews, D. B., Patten, C. A., & Hammond, C. J. (2023). Psilocybin history, action and reaction: A narrative clinical review. Journal of Psychopharmacology, 37(9), 849–865. https://doi.org/10.1177/02698811231190858
Junges, L. H., & Müller-Santos, M. (2025). Exploring the biocatalysis of psilocybin and other tryptamines: Enzymatic pathways, synthetic strategies, and industrial implications. Biotechnology Progress, 41(2), e3513. https://doi.org/10.1002/btpr.3513
Seibold, P. S., Dörner, S., Fricke, J., Schäfer, T., Beemelmanns, C., & Hoffmeister, D. (2024). Genetic regulation of l-tryptophan metabolism in Psilocybe mexicana supports psilocybin biosynthesis. Fungal Biology and Biotechnology, 11(1), 4.
https://doi.org/10.1186/s40694-024-00173-6
Fricke, J., Blei, F., & Hoffmeister, D. (2017). Enzymatic Synthesis of Psilocybin. Angewandte Chemie International Edition, 56(40), 12352–12355.https://doi.org/10.1002/anie.201705489
Janevska, S., Weiser, S., Huang, Y., Lin, J., Hoefgen, S., Jojić, K., Barber, A. E., Schäfer, T., Fricke, J., Hoffmeister, D., Regestein, L., Valiante, V., & Kufs, J. E. (2024). Optimized psilocybin production in tryptophan catabolism-repressed fungi. Microbial Biotechnology, 17(11), e70039.
https://doi.org/10.1111/1751-7915.70039
Milne, N., Thomsen, P., Knudsen, N., Rubaszka, P., Kristensen, M., & Borodina, I. (2020). Metabolic engineering of Saccharomyces cerevisiae for the de novo production of psilocybin and related tryptamine derivatives. Metabolic Engineering, 60, 25–36.
https://doi.org/10.1016/j.ymben.2019.12.007
Lenz, C., Wick, J., Braga, D., García-Altares, M., Lackner, G., Hertweck, C., Gressler, M., & Hoffmeister, D. (2020). Injury-Triggered Blueing Reactions of Psilocybe "Magic" Mushrooms. Angewandte Chemie International Edition, 59(4), 1450–1454. https://doi.org/10.1002/anie.201910175
Hudspeth, J., Rogge, K., Dörner, S., Müll, M., Hoffmeister, D., Rupp, B., & Werten, S. (2024). Methyl transfer in psilocybin biosynthesis. Nature Communications, 15(1), 2709. https://doi.org/10.1038/s41467-024-46997-z
Galdino, T. P., Oliveira, L. C., Luz, M. A., Jesus, R. A., Lima, E. P. N., Torres, M. C. M., Sivieri, K., Afonso, V. I., Delgado, J. M. P. Q., Lima, A. G. B., Silva, S. M. L., & Fook, M. V. L. (2025). Extraction Yields of Psilocybin and Psilocin: A Short Review of Current Methods and Their Implications. Pharmaceuticals, 18(3), 380.https://doi.org/10.3390/ph18030380
Lanham, L., McTaggart, A., & Falconer, J. R. (2025). Is there mush-room to improve the environmental sustainability of psilocybin production? Journal of CO2 Utilization, 98, 103137
Eklund, J., Bremberg, U., Larsson, J., Torkelsson, E., Wennerberg, J., Zandelin, S., & Odell, L. R. (2025). Synthesis and In Vitro Profiling of Psilocin Derivatives: Improved Stability and Synthetic Properties. Journal of medicinal chemistry, 68(7), 7153–7165.
https://doi.org/10.1021/acs.jmedchem.4c02612
Ernst, A. L., Reiter, G., Piepenbring, M., & Bässler, C. (2022). Spatial risk assessment of radiocesium contamination of edible mushrooms - Lessons from a highly frequented recreational area. The Science of the total environment, 807(Pt 2), 150861.
https://doi.org/10.1016/j.scitotenv.2021.150861
Fricke, J., Lenz, C., Wick, J., Blei, F., & Hoffmeister, D. (2019). Production options for psilocybin: making of the magic. Chemistry–A European Journal, 25(4), 897-903. https://doi.org/10.1002/chem.201802758
Flower, J. E., Gibbons Jr., W. J., Adams, A. M., Wang, X., Broude, C. N., & Jones, J. A. (2023). Biosynthesis of psilocybin and its nonnatural derivatives by a promiscuous psilocybin synthesis pathway in Escherichia coli. Biotechnology and Bioengineering, 120(8), 2214–2229.
https://doi.org/10.1002/bit.28480
Huang, Z., Yao, Y., Di, R., Zhang, J., Pan, Y., & Liu, G. (2025). De Novo Biosynthesis of Antidepressant Psilocybin in Escherichia coli. Microbial Biotechnology, 18(4), e70135. https://doi.org/10.1111/1751-7915.70135
Sheppard B. (2021). A Trip Through Employment Law: Protecting Therapeutic Psilocybin Users in the Workplace. Journal of law and health, 35(1), 146–180.
Gibbons, W. J., Jr, McKinney, M. G., O'Dell, P. J., Bollinger, B. A., & Jones, J. A. (2021). Homebrewed psilocybin: can new routes for pharmaceutical psilocybin production enable recreational use? Bioengineered, 12(1), 8863–8871. https://doi.org/10.1080/21655979.2021.1987090
Barrett, F. S., Doss, M. K., Sepeda, N. D., Pekar, J. J., & Griffiths, R. R. (2020). Emotions and brain function are altered up to one month after a single high dose of psilocybin. Scientific Reports, 10(1), 2214. https://doi.org/10.1038/s41598-020-59282-y
Irvine, W., Tyler, M., & Delgoda, R. (2023). In silico characterization of the psilocybin biosynthesis pathway. Computational Biology and Chemistry, 104, 107854. https://doi.org/10.1016/j.compbiolchem.2023.107854
Geiger, H. A., Wurst, M. G., & Daniels, R. N. (2018). DARK Classics in Chemical Neuroscience: Psilocybin. ACS Chemical Neuroscience, 9(10), 2438–2447. https://doi.org/10.1021/acschemneuro.8b00186
Vollenweider, F. X., Vollenweider-Scherpenhuyzen, M. F. I., Bäbler, A., Vogel, H., & Hell, D. (1998). Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. NeuroReport, 9(17), 3897– 3902.
https://doi.org/10.1097/00001756-199812010-00024
Madsen, M. K., Fisher, P. M., Burmester, D., Dyssegaard, A., Stenbæk, D. S., Kristiansen, S., Johansen, S. S., Lehel, S., Linnet, K., Svarer, C., Erritzoe, D., Ozenne, B., & Knudsen, G. M. (2019). Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology, 44(7), 1328–1334. https://doi.org/10.1038/s41386-019-0324-9
Shao, L.-X., Liao, C., Gregg, I., Davoudian, P. A., Savalia, N. K., Delagarza, K., & Kwan, A. C. (2021). Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron, 109(16), 2535–2544. https://doi.org/10.1016/j.neuron.2021.06.008
Purple, R. J., Gupta, R., Thomas, C. W., Golden, C. T., Palomero-Gallagher, N., Carhart-Harris, R., Froudist-Walsh, S., & Jones, M. W. (2025). Short- and long-term modulation of rat prefrontal cortical activity following single doses of psilocybin. Molecular Psychiatry, 30, 5889–5900. https://doi.org/10.1038/s41380-025-03182-y
Raval, N. R., Johansen, A., Donovan, L. L., Ros, N. F., Ozenne, B., Hansen, H. D., & Knudsen, G. M. (2021). A Single Dose of Psilocybin Increases Synaptic Density and Decreases 5-HT2A Receptor Density in the Pig Brain. International Journal of Molecular Sciences, 22(2), 835. https://doi.org/10.3390/ijms22020835
Siegel, J. S., Subramanian, S., Perry, D., Kay, B. P., Gordon, E. M., Laumann, T. O., Reneau, T. R., Metcalf, N. V., Chacko, R. V., Gratton, C., Horan, C., Krimmel, S. R., Shimony, J. S., Schweiger, J. A., Wong, D. F., Bender, D. A., Scheidter, K. M., Whiting, F. I., Padawer-Curry, J. A., Dosenbach, N. U. F. (2024). Psilocybin desynchronizes the human brain. Nature, 632(8023), 131–138.
https://doi.org/10.1038/s41586-024-07624-5
Daws, R. E., Timmermann, C., Giribaldi, B., Sexton, J. D., Wall, M. B., Erritzoe, D., Roseman, L., Nutt, D., & Carhart-Harris, R. (2022). Increased global integration in the brain after psilocybin therapy for depression. Nature Medicine, 28(4), 844–851.
https://doi.org/10.1038/s41591-022-01744-z
Meshkat, S., Tello-Gerez, T. J., Gholaminezhad, F., Dunkley, B. T., Reichelt, A. C., Erritzoe, D., Vermetten, E., Zhang, Y., Greenshaw, A., Burback, L., Winkler, O., Jetly, R., Mayo, L. M., & Bhat, V. (2024). Impact of psilocybin on cognitive function: A systematic review. Psychiatry and Clinical Neurosciences, 78(12), 744–764. https://doi.org/10.1111/pcn.13741
Carhart-Harris, R. L., Bolstridge, M., Day, C. M. J., Rucker, J., Watts, R., Erritzoe, D. E., Kaelen, M., Giribaldi, B., Bloomfield, M., Pilling, S., Rickard, J. A., Forbes, B., Feilding, A., Taylor, D., Curran, H. V., & Nutt, D. J. (2018). Psilocybin with psychological support for treatment-resistant depression: six-month follow-up. Psychopharmacology, 235(2), 399–408. https://doi.org/10.1007/s00213-017-4771-x
Kao, C. F., Kuo, P. H., Yu, Y. W., Yang, A. C., Lin, E., Liu, Y. L., & Tsai, S. J. (2020). Gene-Based Association Analysis Suggests Association of HTR2A With Antidepressant Treatment Response in Depressed Patients. Frontiers in pharmacology, 11, 559601.
https://doi.org/10.3389/fphar.2020.559601
Ross, S., Bossis, A., Guss, J., Agin-Liebes, G., Malone, T., Cohen, B., Mennenga, S. E., Belser, A., Kalliontzi, K., Babb, J., Su, Z., Corby, P., & Schmidt, B. L. (2016). Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: A randomized controlled trial. Journal of Psychopharmacology, 30(12), 1165–1180.
https://doi.org/10.1177/0269881116675512
Grob, C. S., Danforth, A. L., Chopra, G. S., Hagerty, M., McKay, C. R., Halberstadt, A. L., & Greer, G. R. (2011). Pilot Study of Psilocybin Treatment for Anxiety in Patients With Advanced-Stage Cancer. Archives of General Psychiatry, 68(1), 71–78.
https://doi.org/10.1001/archgenpsychiatry.2010.116
Meshkat, S., Malik, G., Zeifman, R. J., Swainson, J., Balachandra, K., Reichelt, A. C., Zhang, Y., Burback, L., Winkler, O., Greenshaw, A., Vermetten, E., Mayo, L. M., Tanguay, R., Jetly, R., & Bhat, V. (2025). Efficacy and safety of psilocybin for the treatment of substance use disorders: A systematic review. Neuroscience & Biobehavioral Reviews, 173, 106163.
https://doi.org/10.1016/j.neubiorev.2025.106163
Cioe, P. A., Stang, G. S., Azam, D., & Dugal, S. (2025). "I've learned that I'm open-minded to this possibility": A qualitative study to evaluate the acceptability of a psilocybin-aided smoking cessation treatment for people with HIV who smoke. Addiction science & clinical practice, 20(1), 56. https://doi.org/10.1186/s13722-025-00563-0
Siegel, J. S., Daily, J. E., Perry, D. A., & Nicol, G. E. (2023). Psychedelic Drug Legislative Reform and Legalization in the US. JAMA Psychiatry, 80(1), 77–83.https://doi.org/10.1001/jamapsychiatry.2022.4101
Davis, A. K., Barrett, F. S., May, D. G., Cosimano, M. P., Sepeda, N. D., Johnson, M. W., Finan, P. H., & Griffiths, R. R. (2021). Effects of Psilocybin-Assisted Therapy on Major Depressive Disorder: A Randomized Clinical Trial. JAMA Psychiatry, 78(5), 481–489.
https://doi.org/10.1001/jamapsychiatry.2020.3285
Bradley, E. R., Sakai, K., Fernandes-Osterhold, G., Szigeti, B., Ludwig, C., Ostrem, J. L., Tanner, C. M., Bock, M. A., Llerena, K., Finley, P. R., O’Donovan, A., Zuzuarregui, J. R. P., Busby, Z., McKernan, A., Penn, A. D., Wang, A. C. C., Rosen, R. C., & Woolley, J. D. (2025). Psilocybin therapy for mood dysfunction in Parkinson’s disease: An open-label pilot trial. Neuropsychopharmacology, 50(8), 1200–1209.
https://doi.org/10.1038/s41386-025-02097-0
Agin-Liebes, G., Nielson, E. M., Zingman, M., Kim, K., Haas, A., Owens, L. T., Rogers, U., & Bogenschutz, M. (2024). Reports of self-compassion and affect regulation in psilocybin-assisted therapy for alcohol use disorder: An interpretive phenomenological analysis. Psychology of Addictive Behaviors, 38(1), 101–113.https://doi.org/10.1037/adb0000935
Heinzerling, K. G., Sergi, K., Linton, M., Rich, R., Youssef, B., Bentancourt, I., Bramen, J., Siddarth, P., Schwartzberg, L., & Kelly, D. F. (2023). Nature-themed video intervention may improve cardiovascular safety of psilocybin-assisted therapy for alcohol use disorder. Frontiers in Psychiatry, 14, 1215972. https://doi.org/10.3389/fpsyt.2023.1215972
Johnson, M. W., Garcia-Romeu, A., Cosimano, M. P., & Griffiths, R. R. (2014). Pilot study of the 5-HT2AR agonist psilocybin in the treatment of tobacco addiction. Journal of Psychopharmacology, 28(11), 983–992. https://doi.org/10.1177/0269881114548296
Johnson, M. W., Garcia-Romeu, A., & Griffiths, R. R. (2017). Long-term follow-up of psilocybin-facilitated smoking cessation. The American Journal of Drug and Alcohol Abuse, 43(1), 55–60. https://doi.org/10.3109/00952990.2016.1170135
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Creative Science

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.





