PLANT GROWTH PROMOTING PROPERTIES OF BACTERIAL ISOLATES FROM SLUDGE OF BIOGAS PRODUCTION PROCESS
Main Article Content
Abstract
The objective of this research was to isolate bacteria from biogas sludge and investigate the plant growth promoting qualifications. The sample were 77 bacterium’s isolates, consisting of 56 isolates of gram-positive and 21 isolates of gram-negative. The qualifications testing of plant growth-promoting consisted of nitrogen fixation, siderophore production, phosphate solubilization, and indole-3-acetic acid production. The research results show that 52 isolates could be able to fix nitrogen on nitrogen-free solid malate medium (NFM) and were divided into 2 groups. The first group included 27 isolates which grown on NFM and changed the color of bromothymol blue. The second group contained 25 isolates which could be able to grow on NFM but not be able to change the color of bromothymol blue. On Chrom Azurol S (CAS) medium, bacteria were found in capable of forming a total of 70 isolates of siderophores. Phosphate solubility tests on GYA double-layered agar medium revealed that 24 isolates were able to grow and form clear blue regions around colonies, and the capability in producing Indole-3-acetic acid test found that there were 67 isolates were capable in producing Indole-3-acetic acid.
Article Details
References
ณิชชา บูรณสิงห์. (2563). ก๊าซชีวภาพผลผลิตจากมูลสัตว์สู่พลังงานทดแทน. สืบค้นเมื่อวันที่ 29 กันยายน2563 จาก https://www.parliament.go.th/ewtadmin/ewt/ parliament_parcy/ewt_dl_link.php?nid=66535&filename=thai_national _assembly
วราภรณ์ สุทธิสา และ บุษบา วาปี. (2562). การคัดแยกแบคทีเรียส่งเสริมการเจริญเติบโตของข้าวจากดินบริเวณรอบรากต้นบานไม่รู้โรยป่า (Gomphrena celosioides Mart.). วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี, 21(3), 87-94.
ศูนย์บริการข้อมูลโครงการศึกษาวิจัยต้นแบบวิสาหกิจชุมชนพลังงานสีเขียวจากพืชพลังงาน. (2556). คู่มือการลงทุนโรงไฟฟ้าก๊าซชีวภาพจากพืชพลังงาน. กรุงเทพฯ: หจก.มิตรภาพการพิมพ์.
Ahmad, F., Ahmad, I., & Khan, M.S. (2005). Indole acetic acid production by the indigenous isolates of azotobacter and fluorescent pseudomonas in the presence and absence of tryptophan, Turkish Journal of Biology, 29, 29-34.
Bakthavatchalu, S., & Shivakumar S. (2016). Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. Agriculture and Natural Resources, 50(4), 250-256.
Bharucha, A. E., Permberton, J. H., & Locke, J. R. (2013) American gastroenterological association technical review on constipation. Gastroenterology, 114(1), 218-238.
Chandna, P., Nain, L., Singh, S., & Kuhad, R. C. (2013). Assessment of bacterial diversity during composting of agricultural byproducts. BMC Microbiology, 13, 1-14.
Glickmann, E., & Dessaux, Y. (1995). A critical examination of the specificity of the Salkowski reagent for indolic compounds Produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61(2), 93–796.
Goswami, D., Pithwa, S., Dhandhukia, P., & Thakke, J. N. (2014). Delineating Kocuria turfanensis 2M4 as a credible PGPR: a novel IAA producing bacteria isolated from saline desert. Journal of Plant Interactions, 9(1), 566–576.
Gupta, S., Meena, M. K., & Datta, S. (2014). Isolation, characterization of plant growth promoting bacteria from the plant Chlorophytum borivilianum and in-vitro screening for activity of nitrogen fixation, phospthate solubilization and IAA production. International Journal of Current Microbiology and Applied Sciences, 3(7), 1082-1090.
Hafeez, F. Y., Yasmin, S., Ariani, D., Rahman, M., Zafar, Y., & Malik, K. A. (2006). Plant growth-promoting bacteria as biofertilizer. Agronomy for Sustainable Development, 26, 143–150.
Hameeda, B., Harini, G., Rupela, O. P., Wani, S. P., & Reddy, G. (2008). Growth promotion of maize by phosphate solubilizing bacteria isolated from composts and macrofauna, Microbiology Research, 163, 234—242.
Hendroko, R., Wahyudi, A., Situmorang, E. C., Toruan, N., Liwang, T., & Wahono, S. K. (2012). Bacteria biodiversity in cow dung, capsule husk and seed cake of Jatropha curcas Linn anaerobic digesters. International Biology Conference (IBOC), Surabaya.
Kanimozhi, K., & Panneerselvam, A. (2010). Studies on isolation and nitrogen fixation ability of Azospirillum spp. isolated from Thanjavur district. Pelagia Research Library, 1(3), 138-145.
Kesaulya, H., Baharuddin, Zakaria, B., & Syaifu, A. S. (2015). Isolation and physiological characterization of PGPR from potato plant rhizosphere in medium land of Buru island. Procedia Food Science, 3, 190–199.
Pahari, A., & Mishra, B. B. (2017). Characterization of siderophore producing rhizobacteria and its effect on growth performance of different vegetables. International Journal of Current Microbiology and Applied Sciences, 6(5), 1398-1405.
Rana, A., Saharan, B., Joshi, M., Prasanna, R., Kumar. K., & Nain, L. (2011). Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Annals of Microbiology, 61, 893-900.
Sutthisa, S., & Khamjandee, S. (2019). Isolation and selection of plant growth promoting rhizobacteria from Wedelia trilobata (L.) A.S. Hitchcock rhizosphere. RMUTP Research Journal Science & Technology, 13(2), 9-92.
Vishan, I., Sivaprakasam, S., & Kalamdhad, A. (2017). Isolation and identification of bacteria from rotary drum compost of water hyacinth. International Journal Recycling Organic Waste in Agriculture, 6, 245–253.
Zhang, J., Wang, P., Fang, L., Zhang, Q. A., Yan, C., & Chen, J. (2017). Isolation and characterization of phosphate-solubilizing bacteria from mushroom residues and their effect on tomato plant growth promotion. Polish Journal of Microbiology, 66(1), 57–65.