DETECTOR FOR SENSING FAULTY TV VIDEO AND AUDIO SIGNAL VIA NOTIFICATION SYSTEM ON LINE APPLICATION

Main Article Content

Nitikom Ariyapim

Abstract

This paper presents the detector for sensing faulty TV video and audio signals via notification system of Line application based on the microcontroller. The principle of this detector was to detect the vertical sync signal which was sent along with the video signal. If the video signal was lost, the detector would not be able to detect a vertical sync signal. Likewise, if there was no audio signal, the sound would be silent and the signal level would be at zero volts. In either case, whether it was the loss of video or audio signal, as well as when the TV transmitter failed to broadcast, the buzzer with built-in frequency generator would generate an alarm immediately. In addition, when there was a loss of video or audio signal, the indicator lamp of the detector would light up. The delay time of buzzers and indicator lamps could be changed by adjusting the VR1 or VR2 respectively. When the detector for sensing faulty TV video signal and audio signal via notification system of Line application was connected to the wireless internet signal and the NodeMCU ESP8266 microcontroller board was connected successfully, the indicator lamp would light up. From the experiment, it was found that the detector for sensing faulty TV video signal and audio signal via notification system of Line application could work very well according to the objective of this research.

Article Details

Section
Research Article

References

บุญชัด เนติศักดิ์. (2556). ทฤษฎีและปฏิบัติเครื่องรับโทรทัศน์. กรุงเทพฯ: ซีเอ็ดยูเคชั่น.

นิติคม อริยพิมพ์, ชัยพร อัดโดดดร และ วินัย คำทวี. (2562). การออกแบบและสร้างระบบ IoT สำหรับบ้านจำลองที่ควบคุมด้วยไมโครคอนโทรลเลอร์ (The Design and Construction of the IoT System for Modeling House Controlled by Microcontroller). ใน: การประชุมวิชาการและเสนอผลงานวิจัยระดับชาติและระดับนานาชาติ ครั้งที่ 7(CASNIC2019), 16 พ.ย. 2562, วิทยาลัยบัณฑิตเอเซีย, ขอนแก่น, หน้า 1535-1545.

Cheung, F. C., & Eric, W. M. Y. (2010). An abnormal sound detection and classification system for surveillance applications. In: Proceedings of 18th European signal processing conference 2010, 23-27 August 2010, Aalborg, Denmark.

Gangadharappa, M., Pooja, G., & Rajiv, K. (2012). Anomaly detection in surveillance video using color modelling. International journal of computer applications, 45(14), 1-6.

Kawaguchi, Y., & Takashi, E. (2017). How can we detect anomalies from subsampled audio signals?. In: Proceedings of IEEE international workshop on machine learning for signal processing, 25-28 September 2017. TOKYO, JAPAN.