Band Selection for Hyperspectral Image Classification
Keywords:
Dimensionality reduction, band selection, classification, hyperspectral imageryAbstract
This research presents a band selection technique for hyperspectral image classification. This technique utilizes mutual information between bands and the ground truth reference map, and correlation coefficients between bands. Band selection in this research comprises two major steps. The first step is to define a set of informative bands, called a candidate set. This set can be identified via mutual information between each band and the ground truth reference map. The second step is to reduce the redundancy between bands using correlation coefficients between bands. Selected bands will be kept in a band selection set. This set comprises the first band presenting in the candidate set. The second band is chosen from the next band presenting in the candidate set that offers a correlation coefficient below the preset threshold. The next band selection can be done in the same criteria until the number of bands is met the requirement. The results show that the proposed technique is useful for band selection. When only 50% of all the bands are utilized for classification, the overall accuracy and average accuracy are greater than those from using all the bands, and kappa coefficients are equal, which are 81.08%, 82.93%, and 0.78, respectively. Moreover, if the number of bands used for classification is less than 50% of all the bands, the classification accuracy is not lower too much when compared with the decrease of the number of bands, such as when only 10% of all the bands are used, the overall accuracy, the average accuracy, and kappa coefficient are dropped to 69.39%, 66.32%, and 0.65, respectively.
References
Chang, -I C. (2013 ) . Hyperspectral data processing: algorithm design and analysis. Singapore: Wiley.
Chen, Y., Nasrabadi, M. N. and Tranc, D. T. (2011). Hyperspectral image classification using dictionary-based sparse representation. IEEE Transaction on Geoscience Remote Sensing, 49(10), 3973 – 3985.
Congalton, R. T. (1991). A Review of Assessing the Accuracy of classifications of remotely sensed data. Remote Sensing Environment, 37, 35 – 46.
Cover, M. T. and Thomas, A. J. (1991). Elements of information theory. New York: Wiley.
Duda, O. R, Hart, E. P. and Stork, G. D. (2001). Pattern classification. (2nd). New York: Wiley.
Guo, B., Gunn, R. S., Damper, I. R. and Nelson, D. B. J. (2006). Band selection for hyperspectral image classification using mutual information. IEEE Transaction on Geoscience Remote Sensing, Letter, 3(4), 522 – 526.
Yuan, Y., Zhu, G. and Wang, Q. (2015). Hyperspectral band selection by multitask sparsity pursuit. IEEE Transaction on Geoscience Remote Sensing, 53(2), 631 – 644.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Faculty of Industrial Technology, Suan Sunandha Rajabhat University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของคณะเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยราชภัฎสวนสุนันทา
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยราชภัฎสวนสุนันทา และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว

