Optimization of Brushless DC Motor for Solar Water Turbine with Maximum Power Point Tracking Circuit
Keywords:
BLDC motor, Solar efficiency, MPPTAbstract
This article explores the optimization of brushless DC motors for solar-powered water turbines. By application, an inverter circuit is a device used to track the maximum power of a solar cell. The experiment was performed on a single solar panel of 36 V with a power of 260 W through the solar power tracking and connected to a brushless DC motor. The results of the experiment concluded that in normal conditions of the water turbine, the solar cell power without the maximum power tracking circuit produced an average of 49.5 W, but when the maximum power tracking circuit was installed, the average power was 137.7 W. It can be seen that when installing the maximum power tracking circuit, the power output is 88.2 W or 2.78 times more efficient. This is achieved by tracking the maximum power using the developed circuit to achieve higher efficiency. The maximum power can also be tracked over the period during which the solar cells are able to generate electricity at different solar intensities, with or without cloud shadows, can still work well.
References
[2] Serm Janjai. (2017). Solar Radiation. (2). Nakhon Pathom: Petchkasem Printing Group Company Limited.
[3] Promphak Boonraksa. (2019). The Power Output Forecasting on Photovoltaic Systems using the Particle Swarm Optimization - Artificial Neural Network Method. A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Doctor of Electrical Engineering. King Mongkut’s institute of Technology Ladkrabang, Thailand.
[4] Department of Alternative Energy Development and Efficiency. (2018). Thailand Alternative Energy Situation 2018. Vol. 16 (No.16), Page 27. Bangkok: Ministry of Energy.
[5] Weerachet khunngern and Wuttipol Tarateraset. (2014). Power Electronices (3). Bangkok: v-j-printing-limited-partnership.
[6] Teywin Nilsakorn. (2014). Improving drive system efficiency for brushless DC electric motors. Thesis Master of Electrical Engineering. King Mongkut’s institute of Technology Ladkrabang, Thailand.
[7] Taywin nilsakron. Promphak Dawan. (2016). A Study of the Effect of BLDC Motor Operation and ASD Adjusted by Various Position of Hall Effect Sensors. Wichcha journal Nakhon Si Thammarat Rajabhat University, Vol. 35 (No.), pp. 79 – 91.
[8] Promphak Boonraksa, and Terapong Boonraksa, “Comparison of Performance Cuk, SEPIC converters and PSO Algorithm for MPPT on Solar Panel,” in the eighth national symposium and the fourth international symposium "Research and Innovation for the Development of Society toward Sustainability" Conference Program, Bangkokthonburi University, 2020, pp. 76-85.
[9] Promphak Boonraksa, Tanakorn Thongpan, Monthicha Datraweeroj Sutanee Aimarom and Terapong Boonraksa, “A Study of Cuk Converter for Maximum Power Point Tracker on 80 W Mono-Crystalline Solar Panel,” in the eighth national symposium and the fourth international symposium "Research and Innovation for the Development of Society toward Sustainability" Conference Program, Bangkokthonburi University, 2020, pp. 86-96.
[10] Maximum power point tracking. (2017). Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems, 35–87. https://doi.org/10.1201/b14303-2
[11] Promphak Boonraksa, Channarong Salakham, Satawat Phumpakwan, “Performance of Maximum Power Point Tracking Using SEPIC Converter,” in the eighth national symposium and the fourth international symposium "Research and Innovation for the Development of Society toward Sustainability" Conference Program, Bangkokthonburi University, 2020, pp. 97-108.
[12] Dawan, P., Worranetsuttikul, K., Kittisontirak, S., Sriprapha, K., and Titiroongruang, W. (2018). Performance of the Temperature Model in Forecasting the Power Output of Photovoltaic Systems. International Electrical Engineering Congress, Vol 1, pp. 209- 211.
[13] Yousry Atia, (2014). Photovoltaic maximum power point tracking using sepic converter. ERJ. Engineering Research Journal, Vol 32(4), pp. 437-445. doi:10.21608/erjm.2009.69528
[14] Tawin Nilsakhon. (2014). Efficiency improvement on brushless DC motor drive systems. Thesis Master of Electrical Engineering. King Mongkut’s institute of Technology Ladkrabang ,Thailand.
[15] Yi-Hwa Liu, Shyh-Ching Huang, Jia-Wei Huang and Wen-Cheng Liang.(2012). A Particle Swarm Optimization-Based Maximum Power Point Tracking Algorithm for PV Systems Operating Under Partially Shaded Conditions. IEEE Transactions on Energy Conversion, Vol 27, Issue: 4.
[16] Poom Konghuayrob. (2013). A study on multiple step size incremental conductance technique and fuzzy logic control for MPPT in flyback PV inverter. Thesis Master of Electrical Engineering. King Mongkut’s institute of Technology Ladkrabang, Thailand.
[17] Kritapas Phinsantia. (2014). Design Technique of brushless DC motor control with Sensorless Back EMF Zero Crossing Detection. Thesis Master of Electrical Engineering. King Mongkut’s institute of Technology Ladkrabang, Thailand.
Downloads
Published
How to Cite
Issue
Section
License
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของคณะเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยราชภัฎสวนสุนันทา
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยราชภัฎสวนสุนันทา และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว