Sentiment Analysis of Twitter data based on Cannabis Legalization

Main Article Content

Smith Tripornkanokrat
Ketsarin Boonkanit
Nuttachai Kulthammanit
Veerachai Suwatvanich

Abstract

This study delves into Thai public sentiment towards cannabis legalization by analyzing Twitter data from 2019 to 2024. Despite recent legalization for medical and industrial purposes, our findings reveal a persistent negative public perception. Thais express significant concerns about potential societal harms, such as increased drug use and negative impacts on youth. While proponents highlight medical benefits and personal freedoms, the broader online conversation remains dominated by negative associations linked to cannabis, including crime and societal decay. Employing advanced natural language processing techniques, we identified three distinct sentiment clusters: strongly opposed, mixed, and supportive. Our results clearly show that while discussions about cannabis have grown, negative sentiment continues to prevail, especially when linked to political issues and perceived threats to social order. These findings underscore the complex interplay between public opinion, policy changes, and cultural attitudes toward cannabis in Thailand.

Article Details

How to Cite
Tripornkanokrat, S., Boonkanit, K., Kulthammanit, N., & Suwatvanich, V. (2024). Sentiment Analysis of Twitter data based on Cannabis Legalization. SAU JOURNAL OF SCIENCE & TECHNOLOGY, 10(2), 85–94. retrieved from https://ph01.tci-thaijo.org/index.php/saujournalst/article/view/258417
Section
Research Article

References

(2024, May 13). “Marijuana ในเงื้อมมือรัฐ คืน "กัญชา" กลับสู่บัญชียาเสพติด”: Thai PBS https://www.thaipbs.or.th/news/content/339943

(2024, March 1). “กัญชาเสรีไทยใกล้ถึงจุดจบหรือไม่ เมื่อรัฐบาลประกาศตั้งเป้าห้ามใช้เพื่อ “สันทนาการ” ภายในสิ้นปี 2567”: BBC NEWS ไทย https://www.bbc.com/thai/articles/cn4lymm38myo

(2022, Dec 05). “ร่าง พ.ร.บ.กัญชา: ส่องมาตรการควบคุมกัญชาหลังถูกปลดจากบัญชียาเสพติด“ : iLaw https://www.ilaw.or.th/articles/5534

(2024, Jul 04). “อดีต ปัจจุบัน อนาคต นโยบายกัญชา“ : Thai PBS Policy Watch https://policywatch.thaipbs.or.th/article/life-43

(2023, May 26). “ย้อนรอย “กัญชา” จากปลดล็อก สู่ MOU กลับเป็นยาเสพติด“ : The Active Thai PBS https://theactive.net/read/timelines-of-cannabis/

(2021, Mar 10). “กัญชา - กัญชง เรียบเรียงไทม์ไลน์ อ่านง่าย สบายสมอง (2564)“ : Growcery https://theactive.net/read/timelines-of-cannabis/

Adoma, A. F., Henry, N. M., & Chen, W. (2020, December).Comparative analyses of bert, roberta, distilbert, and xlnet for text-based emotion recognition. In 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP) (pp. 117-121). IEEE.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.

Zul, M. I., Yulia, F., & Nurmalasari, D. (2018, October). Social media sentiment analysis using K-means and naïve bayes algorithm. In 2018 2nd International conference on electrical engineering and informatics (ICon EEI) (pp. 24-29). IEEE.

Iparraguirre-Villanueva, O., Guevara-Ponce, V., Sierra-Liñan, F., Beltozar-Clemente, S., & Cabanillas-Carbonel, M. (2022). Sentiment analysis of tweets using unsupervised learning techniques and the k-means algorithm.

Kabir, A. I., Ahmed, K., & Karim, R. (2020). Word cloud and sentiment analysis of Amazon earphones reviews with R programming language. Informatica Economica, 24(4), 55-71.

Buscemi, A., & Proverbio, D. (2024). Chatgpt vs gemini vs llama on multilingual sentiment analysis. arXiv preprint arXiv:2402.01715.

Shi, C., Wei, B., Wei, S., Wang, W., Liu, H., & Liu, J. (2021). A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm. EURASIP journal on wireless communications and networking, 2021, 1-16.

Almaqbali, I. S. H., Al Khufairi, F. M. A., Khan, M. S., Bhat, A. Z., & Ahmed, I. (2019). Web scrapping: Data extraction from websites. Journal of Student Research.

Phatthiyaphaibun, W., Chaovavanich, K., Polpanumas, C., Suriyawongkul, A., Lowphansirikul, L., Chormai, P., ... & Udomcharoenchaikit, C. (2023). Pythainlp: Thai natural language processing in python. arXiv preprint arXiv:2312.04649.

Tijare, P., & Rani, P. J. (2020, December). Exploring popular topic models. In Journal of Physics: Conference Series (Vol. 1706, No. 1, p. 012171). IOP Publishing.

Sievert, C., & Shirley, K. (2014, June). LDAvis: A method for visualizing and interpreting topics. In Proceedings of the workshop on interactive language learning, visualization, and interfaces (pp. 63-70).

Lerksuthirat, T., Srisuma, S., Ongphiphadhanakul, B., & Kueanjinda, P. (2023). Sentiment and topic Modeling analysis on twitter reveals concerns over cannabis-containing food after cannabis