Effects of fermented crickets (Gryllus bimaculatus) with pineapple for supplementation in feeds on growth performance, immune function, antioxidant activities and microflora in broiler chickens
Main Article Content
Abstract
The poultry industry is vulnerable to pathogenic bacteria, leading to antibiotic use for disease prevention and growth enhancement. However, overuse causes resistance and disrupts gut microbiota, affecting consumers. Therefore, discovering alternatives to antibiotics is crucial. Crickets are highly nutritious insects, and fermentation enhances their nutritional value and biological activities. This study evaluated the effects of fermented crickets supplementation, where the crickets were fermented together with pineapple using natural fermentation relying on endogenous microbial activity in raw materials (submerged fermentation), on growth performance, inflammatory responses, immune function, antioxidative activity, and gut microbiota in broiler chickens. This study used 315 one-day-old unsexed Arbor Acres broiler chicks, which were divided into three groups with seven replicates per group: a control (CT) and two treatments supplemented with 1% (FC1) or 3% (FC3) fermented crickets. Results showed that no significant growth differences among groups (P > 0.05). At 21 days, the FC3 group had lower serum IgY (1,008.50 µg/ml) and large intestine IgA levels (834.05 µg/g) than CT group (serum IgY: 1,652.03 µg/ml; large intestine IgA: 1,345.72 µg/g, P < 0.01). The FC3 group also had lower serum nitric oxide at 21 days (195 nmole/ml, P < 0.05) than FC1 group and reduced IL-6 at 42 days (853.91 pg/ml, P < 0.05) compared to the CT group. At 21 days, E. coli and Salmonella spp. were absent in the FC3 group, and lactic acid bacteria (LAB) levels increased significantly by day 42 (P < 0.05). Antioxidant activity in the FC3 group was higher than in the CT group at 21 days and the FC1 group at 42 days (P < 0.05). In summary, the FC3 group reduced pathogenic bacteria, lowered IgY and IgA, suppressed inflammatory markers, and enhanced antioxidant activity, suggesting potential to mitigate gut oxidative stress and inflammation in broilers.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Roth N, Käsbohrer A, Mayrhofer S, Zitz U, Hofacre C, Domig KJ. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poult Sci. 2019;98(4):1791-804.
Aarestrup FM. Veterinary Drug Usage and Antimicrobial Resistance in Bacteria of Animal Origin. Basic Clin Pharmacol Toxicol. 2005;96(4):271-81.
World Health Organization. Global action plan on antimicrobial resistance (WHA68.7) [Internet]. World Health Assembly, 68th session; 2015. Available form: https://www.who.int/publications/i/item/9789241509763.
Gupta R, Sharma S. Role of alternatives to antibiotics in mitigating the antimicrobial resistance crisis. Indian J Med Res. 2022;156(3):464-77.
Mehdi Y, Létourneau-Montminy MP, Gaucher ML, Chorfi Y, Suresh G, Rouissi T, et al. Use of antibiotics in broiler production: Global impacts and alternatives. Animal Nutrition. 2018;4(2):170-8.
Thong HT, Thu LNA, Duc HV. Chapter potential substitutes of antibiotics for swine and poultry production. Rijeka: IntechOpen; 2022.
Arsene MMJ, Jorelle ABJ, Sarra S, Viktorovna PI, Davares AKL, Ingrid NKC, et al. Short review on the potential alternatives to antibiotics in the era of antibiotic resistance. J Appl Pharm Sci. 2022;12(1):29-40.
Ayalew H, Zhang H, Wang J, Wu S, Qiu K, Qi G, et al. Potential Feed Additives as Antibiotic Alternatives in Broiler Production. Front Vet Sci. 2022;9:916473.
Kolobe SD, Manyelo TG, Sebola NA, Malematja E, Mabelebele M. Prospects of rearing selected southern African swarming insects for animal feed: a review on insect farming and the economic value of edible insects. Agric Food Secur. 2024;13:6.
Tilami SK, Turek J, Červený D, Lepič P, Kozák P, Burkina V, et al. Insect meal as a partial replacement for fish meal in a formulated diet for perch Perca fluviatilis. Turk J Fish Aquat Sci. 2020;20(12):867-78.
Veldkamp T, van Duinkerken G, van Huis A, Lakemond CMM, Ottevanger E, Bosch G, et al. Insects as a sustainable feed ingredient in pig and poultry diets: A feasibility study [Internet]. Wageningen UR Livestock Research; 2012. Available from: https://edepot.wur.nl/234247
Abd El-Hack ME, El-Saadony MT, Salem HM, El-Tahan AM, Soliman MM, Youssef GBA, Taha AE, et al. Alternatives to antibiotics for organic poultry production: types, modes of action and impacts on bird's health and production. Poult Sci. 2022;101(4):101696.
Malematja E, Manyelo TG, Sebola NA, Mabelebele M. The role of insects in promoting the health and gut status of poultry. Comp Clin Pathol. 2023;32:501-13.
Khan SH. Recent advances in role of insects as alternative protein source in poultry nutrition. J Appl Anim Res. 2018;46(1):1144-57.
Sánchez-Estrada M de la L, Aguirre-Becerra H, Feregrino-Pérez AA. Bioactive compounds and biological activity in edible insects: A review. Heliyon. 2024;10(2):e24045.
Magara HJO, Niassy S, Ayieko MA, Mukundamago M, Egonyu JP, Tanga CM, et al. Edible crickets (orthoptera) around the world: distribution, nutritional value, and other benefits-a review. Front Nutr. 2020;7:537915.
Halloran A, Hanboonsong Y, Roos N, Bruun S. Life cycle assessment of cricket farming in north-eastern Thailand. J Clean Prod. 2017;156:83-94.
Phesatcha B, Phesatcha K, Viennaxay B, Matra M, Totakul P, Wanapat M. Cricket meal (Gryllus bimaculatus) as a protein supplement on in vitro fermentation characteristics and methane mitigation. Insects. 2022;13(2):129.
Liceaga AM. Processing insects for use in the food and feed industry. Curr Opin Insect Sci. 2021;48:32-6.
Fashakin OO, Tangjaidee P, Unban K, Klangpetch W, Khumsap T, Sringarm K, et al. Isolation and identification of antioxidant peptides derived from cricket (Gryllus bimaculatus) protein fractions. Insects. 2023;14(8):674.
Kewuyemi YO, Kesa H, Chinmaa CE, Adebo OA. Fermented Edible Insects for Promoting Food Security in Africa. Insects. 2020;11(5):283.
Martinez-Villaluenga C, Peñas E, Frias J. Chapter 2- Bioactive peptides in fermented foods: production and evidence for health effects. In: Frias J, Martinez-Villaluenga C, Peñas E, editor. Fermented Foods in Health and Disease Prevention. Boston: Academic Press; 2017.
Bangar SP, Suri S, Trif M, Ozogul F. Organic acids production from lactic acid bacteria: A preservation approach. Food Biosci. 2022;46:101615.
Gao J, Zhang HJ, Wu SG, Yu SH, Yoon I, Moore D, et al. Effect of Saccharomyces cerevisiae fermentation product on immune functions of broilers challenged with Eimeria tenella. Poult Sci. 2009;88(10):2141-51.
Sugiharto S, Yudiarti T, Isroli I, Widiastuti E, Kusumanti E. Dietary supplementation of probiotics in poultry exposed to heat stress-a review. Annals of Animal Science. 2017;17: 591-604.
Sugiharto S, Ranjitkar S. Recent advances in fermented feeds towards improved broiler chicken performance, gastrointestinal tract microecology and immune responses: A review. Anim Nutr. 2019;5(1):1-10.
Solecka K, Drażbo A. The use of insects in poultry nutrition - a review. Anim Sci Genet. 2024;20(3):23-36.
Ardra M, Pradhan C, Das S, Pillai D. The effect of fishmeal replacement with organic acid fermented black soldier fly (Hermetia illucens) larvae meal on growth, nutrient utilization, metabolic enzyme activity, antioxidant status and immunity in Pangasius (Pangasianodon hypophthalmus). Aquaculture. 2024;591:741114.
Xiang Y, Gao S, Luo Y, Tang G, Zou X, Xie K, et al. Fermented black soldier fly larvae as a sustainable replacement for marine fish in Asian swamp eel diets. Vet World. 2025;18(4):1002-13.
Vasilopoulos S, Giannenas I, Mellidou I, Papadopoulos E, Tzora A, Bonos E, et al. Diet replacement with whole insect larvae affects intestinal morphology and microbiota of broiler chickens. Sci Rep. 2024;14:6836.
Benzertiha A, Kierończyk B, Kołodziejski P, Pruszyńska-Oszmałek E, Rawski M, Józefiak D, et al. Tenebrio molitor and Zophobas morio full-fat meals as functional feed additives affect broiler chickens' growth performance and immune system traits. Poult Sci. 2020;99(1):196-206.
Vasilica BTB, Chiș MS, Alexa E, Pop C, Păucean A, Man S, et al. The impact of insect flour on sourdough fermentation-fatty acids, amino acids, minerals and volatile profile. Insects. 2022;13(7):576.
Xu F, Wu H, Xie J, Zeng T, Hao L, Xu W, et al. The Effects of fermented feed on the growth performance, antioxidant activity, immune function, intestinal digestive enzyme activity, morphology, and microflora of yellow-feather chickens. Animals. 2023;13(22):35-45.
Rivas-Navia DM, Duenas-Rivadeneira AA, Duenas-Rivadeneira JP, Aransiola SA, Maddela NR, Prasad R. Bioactive compounds of insects for food use: potentialities and risks. J Agric Food Res. 2023;14:100807.
Abassi S, Emtiazi G, Hosseini-Abari A, Kim BG. Chitooligosaccharides and thermostable chitinase against vulvovaginal candidiasis and saprophyte fungi: lc mass studies of shrimp shell fermentation by bacillus altitudinis. Curr Microbiol. 2020;77(1):40-8.
Jung WJ, Park RD. Bioproduction of Chitooligosaccharides: Present and Perspectives. Marine Drugs. 2014;12(11):5328-56.
Cheng G, Hu T, Zeng Y, Yan L, Liu Y, Wang Y, et al. Enhancing immune response, antioxidant capacity, and gut health in growing beagles through a chitooligosaccharide diet. Front Vet Sci. 2024;10:1283248.
Gu YF, Chen YP, Jin R, Wang C, Wen C, Zhou YM. Dietary chitooligosaccharide supplementation alleviates intestinal barrier damage, and oxidative and immunological stress in lipopolysaccharide-challenged laying hens. Poult Sci. 2022;101(4):101701.
Li J, Tao L, Zhang R, Yang G. Effects of fermented feed on growth performance, nutrient metabolism and cecal microflora of broilers. Anim Biosci. 2022;53(4):596-604.
Liu S, Yan W, Ma C, Liu Y, Gong L, Levesque C, et al. Effects of supplemented culture media from solid-state fermented Isaria cicadae on performance, serum biochemical parameters, serum immune indexes, antioxidant capacity and meat quality of broiler chickens. Asian-Australas J Anim Sci. 2020;33(4):568-78.
Fisher HJ, Empey M, MacIsaac JL, Rathgeber BR, Mason B, Colombo SM, et al. The effects of cricket meal (Gryllus sigillatus) on the meat quality, growth, and internal morphology of broiler chickens. Can J Anim Sci. 2023;104:1-38.
Sun H, Tang JW, Fang CL, Yao XH, Wu YF, Wang X, et al. Molecular analysis of intestinal bacterial microbiota of broiler chickens fed diets containing fermented cottonseed meal. Poult Sci. 2013;92(2):392-401.
Jazi V, Boldaji F, Dastar B, Hashemi SR, Ashayerizadeh A. Effects of fermented cottonseed meal on the growth performance, gastrointestinal microflora population and small intestinal morphology in broiler chickens. Br Poult Sci. 2017;58(4):402-8.
Peng W, Talpur MZ, Zeng Y, Xie P, Li J, Wang S, et al. Influence of fermented feed additive on gut morphology, immune status, and microbiota in broilers. BMC Veterinary Research. 2022;18: 218.
Hong TTT, Thuy TT, Passoth V, Lindberg JE. Gut ecology, feed digestion and performance in weaned piglets fed liquid diets. Livestock Science. 2009;125:232-7.
Murry AC Jr, Hinton A Jr, Morrison H. Inhibition of Growth of Escherichia coli, Salmonella Typhimurium, and Clostridia perfringens on Chicken Feed Media by Lactobacillus salivarius and Lactobacillus plantarum. Int J Poult Sci. 2004;3(9):603-7.
Lv J, Guo L, Chen B, Hao K, Ma H, Liu Y, et al. Effects of different probiotic fermented feeds on production performance and intestinal health of laying hens. Poult Sci. 2022;101(2):101570.
Śliżewska K, Chlebicz-Wójcik A. Growth kinetics of probiotic Lactobacillus strains in the alternative, cost-efficient semi-solid fermentation medium. Biology (Basel). 2020;9(12):423.
Loo JS, Oslan SNH, Mokshin NAS, Othman R, Amin Z, Dejtisakdi W, et al. Comprehensive review of strategies for lactic acid bacteria production and metabolite enhancement in probiotic cultures: multifunctional applications in functional foods. Fermentation. 2025;11(5):241.
Morgan NK, Walk CL, Bedford MR, Burton EJ. The effect of dietary calcium inclusion on broiler gastrointestinal pH: quantification and method optimization. Poult Sci. 2014;93(2):354-63. doi:10.3382/ps.2013-03305.
Fitsum S, Gebreyohannes G, Sbhatu DB. Bioactive compounds in fermented foods: health benefits, safety, and future perspectives. Appl Food Res. 2025;5(2):101097.
Verardo V, Gómez-Caravaca AM, Tabanelli G. Bioactive components in fermented foods and food by-products. Foods. 2020;9(2):153.
Alshelmani MI, Loh TC, Foo HL, Sazili AQ, Lau WH. Effect of feeding different levels of palm kernel cake fermented by Paenibacillus polymyxa ATCC 842 on nutrient digestibility, intestinal morphology, and gut microflora in broiler chickens. Anim Feed Sci Technol. 2016;216:216-24.
Thanadna B, Niyamosot C. Epidemiological characteristics and risk factors for Salmonella spp. in GAP certified broiler and breeder farms in Lopburi in 2020. Research Report No. 64(2)-0116(1)-102. Lopburi Provincial Livestock Office and Saraburi Provincial Livestock Office, Thailand; 2020.
Rugpudsa P, Kasemsuwan S, Saengthongpinit C. Prevalence of Salmonella spp. in broiler industrial production chain. In: Proceedings of 51st Kasetsart University Annual Conference. Bangkok; Veterinary Medicine, Fisheries; 2013. p. 1-8.
Yegani M and Korver DR. Factors affecting intestinal health in poultry. Poult Sci. 2008;87(10):2052-2063.
Cruvinel WM, DM Jr, Araújo JAP, Catelan TTT, de Souza AWS, da Silva NP, et al. Immune system-Part I fundamentals of innate immunity with emphasis on molecular and cellular mechanisms of inflammatory response. Bras J Rheumatol. 2010;55(4):434-61.
Shahini A, Shahini A. Role of interleukin-6-mediated inflammation in the pathogenesis of inflammatory bowel disease: focus on the available therapeutic approaches and gut microbiome. J Cell Commun Signal. 2023;17(1):55-74.
Soufli I, Toumi R, Rafa H, Touil-Boukoffa C. Overview of cytokines and nitric oxide involvement in immuno-pathogenesis of inflammatory bowel diseases. World J Gastrointest Pharmacol Ther. 2016 6;7(3):353-60.
Chen CY, Tsen HY, Lin CL, Yu B, Chen CS. Oral administration of a combination of select lactic acid bacteria strains to reduce the Salmonella invasion and inflammation of broiler chicks. Poult Sci. 2012;91(9):2139-47.
Voidarou C, Antoniadou M, Rozos G, Tzora A, Skoufos I, Varzakas T, et al. Fermentative foods: microbiology, biochemistry, potential human health benefits and public health issues. Foods. 2020;10(1):69.
Pechrkong T, Kaewkong W, Hwanhlem N, Subsoontorn P, Tartrakoon W, Incharoen T, et al. The interleukin 6 (IL-6) gene expression is decreased by probiotic supplementation in young Barbary ducks. Khon Kaen Agric J. 2021;49(Suppl 1):89-94.
Cristofori F, Dargenio VN, Dargenio C, Miniello VL, Barone M, Francavilla R. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: a door to the body. Front Immunol. 2021;26(12):578386.
Palkovicsné Pézsa N, Kovács D, Rácz B, Farkas O. Effects of Bacillus licheniformis and Bacillus subtilis on Gut Barrier Function, Proinflammatory Response, ROS Production and Pathogen Inhibition Properties in IPEC-J2-Escherichia coli/Salmonella Typhimurium Co Culture. Microorganisms. 2022;10:936.
Aghamohammad S, Sepehr A, Miri ST, Najafi S, Pourshafie MR, Rohani M. The role of combining probiotics in preventing and controlling inflammation: a focus on the anti-inflammatory and immunomodulatory effects of probiotics in an in vitro model of IBD. Can J Gastroenterol Hepatol. 2022;2022(1):2045572.
Choi EY, Lee SS, Hyeon JY, Choe SH, Keum BR, Lim JM, et al. Effects of β-glucan on the release of nitric oxide by macrophages stimulated with lipopolysaccharide. Asian-Australas J Anim Sci. 2016;29(11):1664-74.
Lieb K, Engels S, Fiebich BL. Inhibition of LPS-induced iNOS and NO synthesis in primary rat microglial cells. Neurochemistry International. 2003;42(2):131-7.
Poljakovic M, Svensson ML, Svanborg C, Johansson K, Larsson B, Persson K. Escherichia coli-induced inducible nitric oxide synthase and cyclooxygenase expression in the mouse bladder and kidney. Kidney Int. 2001;59(3):893-904.
Shehata AA, Yalçın S, Latorre JD, Basiouni S, Attia YA, Abd El-Wahab A, et al. Probiotics, prebiotics, and phytogenic substances for optimizing gut health in poultry. Microorganisms. 2022;10(2):395.
Sun Y, Liu Z, Ren L, Wei Z, Wang P, Li N, et al. Immunoglobulin genes and diversity: what we have learned from domestic animals. J Animal Sci Biotechnol. 2012;3:18.
Alberts B, Johnson A, Lewis J. Molecular Biology of the Cell. 4th edition. Chapter 24, The Adaptive Immune System. New York: Garland Science; 2002.
Janeway CAJ, Travers P, Walport M. Immunobiology: The Immune System in Health and Disease. 5th edition. Principles of innate and adaptive immunity. New York: Garland Science; 2001.
Ulmer-Franco AM. Transfer of Chicken Immunoglobulin Y (IgY) from the Hen to the Chick. Avian Biology Research. 2012;5(2):81-7.
Abbas AT, El-Kafrawy SA, Sohrab SS, Azhar EIA. IgY antibodies for the immunoprophylaxis and therapy of respiratory infections. Human Vaccines & Immunotherapeutics. 2019;15(1):264-75.
Dias da Silva W, Tambourgi DV, Pietrzak B, Tomela K, Olejnik-Schmidt A, Mackiewicz A, et al. Secretory IgA in intestinal mucosal secretions as an adaptive barrier against microbial cells. Int J Mol Sci. 2020;21(23):9254.
Jazi V, Mohebodini H, Ashayerizadeh A, Shabani A, Barekatain R. Fermented soybean meal ameliorates Salmonella Typhimurium infection in young broiler chickens. Poult Sci. 2019;98(11):5648-60.
Sugiharto S, Yudiarti T, Isroli I, Widiastuti E, Wahyuni HI, Sartono TA. Fermented feed as a potential source of natural antioxidants for broiler chickens -A mini review. Agric Conspec Sci. 2019;84(4):313-8.
Gao Y, Liang Q, Sun J, Wu X, Song Y, Xu Y, et al. Probiotic potential of lactic acid bacteria with antioxidant properties in modulating health: mechanisms, applications, and future directions. Food Biosci. 2025;66:106181.
Fu Z, Ao N, Liang X, Chen J, Wang Y, Wang Q, et al. Effects of fermented feed on growth performance, serum biochemical indexes, antioxidant capacity, and intestinal health of lion-head goslings. Front Vet Sci. 2023;10:1284523.
Niu Y, Zhang JF, Wan XL, Huang Q, He JT, Zhang XH, et al. Effect of fermented Ginkgo biloba leaves on nutrient utilisation, intestinal digestive function and antioxidant capacity in broilers. Br Poult Sci. 2019;60(1):47-55.
Kennedy MS, Chang EB. The microbiome: Composition and locations. Prog Mol Biol Transl Sci. 2020;176:1-42.
Rajoka MSR, Thirumdas R, Mehwish HM, Umair M, Khurshid M, Hayat HF, et al. Role of food antioxidants in modulating gut microbial communities: novel understandings in intestinal oxidative stress damage and their impact on host health. Antioxidants (Basel). 2021;10(10):1563.
Lucas AJS, Oliveira LM, Rocha M, Prentice C. Edible insects: An alternative of nutritional, functional and bioactive compounds. Food Chemistry. 2020;311:126022.
Kittibunchakul S, Whanmek K, Santivarangkna C. Physicochemical, microbiological and nutritional quality of fermented cricket (Acheta domesticus) paste. LWT. 2023;189:115444.
Diether NE, Willing BP. Microbial fermentation of dietary protein: an important factor in diet-microbe-host interaction. Microorganisms. 2019;7(1):19.
Kerksick C, Willoughby D. The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. J Int Soc Sports Nutr. 2005;2(2):38-44.
Kilicarslan YD, Fuwad A, Lee KH, Kim HK, Kang L, Kim SM, et al. Evaluation of the protective role of vitamin E against ROS-driven lipid oxidation in model cell membranes. Antioxidants (Basel). 2024;13(9):1135.
Guedes LM, Torres S, Sáez-Carillo K, Becerra J, Pérez CI, Aguilera N. High antioxidant activity of phenolic compounds dampens oxidative stress in Espinosa nothofagi galls induced on Nothofagus obliqua buds. Plant Sci. 2022;314:111114.