Prediction of the fatigue life of elevator wire rope using the Grey model GM (1,1)

Main Article Content

Sittiphan Subcharoen
Pipat Pramot
Terdkiat Limpeteeprakarn
Apisit Muanmuang
Manusak Janthong

Abstract

This article presents a tensile testing method for elevator wire ropes to predict fatigue life using the Grey GM (1,1) model, based on the relationship between applied force and the service life of the wire rope. The model is constructed from testing data where forces are applied to the wire rope until failure or damage occurs. A tensile testing machine for elevator wire ropes was designed and constructed, with a 5-meter-tall steel frame structure. At the top, a driving machine consisting of a 7.5-horsepower motor was installed to pull a wire rope with a diameter of 10 millimeters. One end of the wire rope is attached to the lift car, while the other is connected to the counterweight, enabling two-level vertical movement. The tensile force simulation involved adding masses of 350, 450, 550, and 650 kilograms, which moved up and down and stopped abruptly. The peak tensile forces recorded in the wire rope were 3.641, 4.845, 6.666, and 7.873 kilonewtons, respectively. The predicted fatigue life of the wire rope corresponding to these forces was 1,347,302; 927,853; 638,988; and 440,055 cycles. The results show that the fatigue life of the wire rope decreases as the tensile force increases. Predicting the fatigue life of wire ropes is crucial for inspection and quality assessment of elevator ropes. It allows for estimating wear over time in accordance with the Ministerial Regulation on Standards for Safety Management, Occupational Health, and Working Environment concerning Machinery, Cranes, and Boilers B.E. 2564 (2021).

Article Details

How to Cite
1.
Subcharoen S, Pramot P, Limpeteeprakarn T, Muanmuang A, Janthong M. Prediction of the fatigue life of elevator wire rope using the Grey model GM (1,1). J Appl Res Sci Tech [internet]. 2025 Sep. 29 [cited 2025 Dec. 11];24(3):260813. available from: https://ph01.tci-thaijo.org/index.php/rmutt-journal/article/view/260813
Section
Research Articles

References

Pal U, Mukhopadhyay G, Sharma A, Bhattacharya S. Failure analysis of wire rope of ladle crane in steel making shop. Int J Fatigue [Internet]. 2018;116:149-55. Available from: http://dx.doi.org/10.1016/j.ijfatigue.2018.06.019.

Cao X, Wu W. The establishment of a mechanics model of multi-strand wire rope subjected to bending load with finite element simulation and experimental verification. Int J Mech Sci [Internet]. 2018;142-143:289-303. Available from: http://dx.doi.org/10.1016/j.ijmecsci.2018.04.051.

Wang XY, Meng XB, Wang JX, Sun YH, Gao K. Mathematical modeling and geometric analysis for wire rope strands. Appl Math Model [Internet]. 2015;39(3-4):1019-32. Available from: http://dx.doi.org/10.1016/j.apm.2014.07.015.

Zhang D, Feng C, Chen K, Wang D, Ni X. Effect of broken wire on bending fatigue characteristics of wire ropes. Int J Fatigue [Internet]. 2017;103:456-65. Available from: http://dx.doi.org/10.1016/j.ijfatigue.2017.06.024.

Wahid A, Mouhib N, Ouardi A, Sabah F, Chakir H, ELghorba M. Experimental prediction of wire rope damage by energy method. Eng Struct [Internet]. 2019;201(109794):109794. Available from: http://dx.doi.org/10.1016/j.engstruct.2019.109794.

Chang XD, Huang HB, Peng YX, Li SX. Friction, wear and residual strength properties of steel wire rope with different corrosion types. Wear [Internet]. 2020;458-459(203425):203425. Available from: http://dx.doi.org/10.1016/j.wear.2020.203425.

Battini D, Solazzi L, Lezzi AM, Clerici F, Donzella G. Prediction of steel wire rope fatigue life based on thermal measurements. Int J Mech Sci [Internet]. 2020;182(105761):105761. Available from: http://dx.doi.org/10.1016/j.ijmecsci.2020.105761.

Shu Q, Wang K, Yuan G, Zhang Y, Lu L, Liu Z. Assessing capacity of corroded angle members in steel structures based on experiment and simulation. Constr Build Mater [Internet]. 2020;244(118210):118210. Available from: http://dx.doi.org/10.1016/j.conbuildmat.2020.118210.

Li G, Hou C, Shen L, Yao GH. Performance and strength calculation of CFST columns with localized pitting corrosion damage. J Constr Steel Res [Internet]. 2022;188(107011):107011. Available from: http://dx.doi.org/10.1016/j.jcsr.2021.107011.

Xiang-dong C, Yu-xing P, Zhen-cai Z, Sheng-yong Z, Xian-sheng G, Chun-ming X. Effect of wear scar characteristics on the bearing capacity and fracture failure behavior of winding hoist wire rope. Tribol Int [Internet]. 2019;130:270-83. Available from: http://dx.doi.org/10.1016/j.triboint.2018.09.023.

Wu S, He P, Gong X. Analysis of transverse vibration of wire rope in flexible hoisting system. J Vibroengineering [Internet]. 2021;23(2):283-97. Available from: http://dx.doi.org/10.21595/jve.2020.21487.

Ray A, Dhua SK, Mishra KB, Jha S. Microstructural manifestations of fractured Z-profile steel wires on the outer layer of a failed locked coil wire rope. Pr Fail Anal [Internet]. 2003;3(4):51-5. Available from: http://dx.doi.org/10.1007/bf02715933.

Steel wire ropes for lifts - Minimum requirements: ISO 4344:2004(E). Geneva, Switzerland, 2004. Safety rules for the construction and installation of lifts-Part 1: Electric lifts. London: BSI Group; 2009.

Inspection Standard of Elevator, escalator and Dumbwaiter JIS A 4302-1992. Japan: Japanese Industrial Standard; 1992.

Thangavel D. Study of occupational health and safety: Elevator construction, mechanism, repairs, and reinstallations. SSRN Electron J [Internet]. 2023; Available from: http://dx.doi.org/10.2139/ssrn.4392601.

Wang W, Yang H, Chen Y, Huang X, Cao J, Zhang W. Motion analysis of wire rope maintenance device. Actuators [Internet]. 2023;12(10):392. Available from: http://dx.doi.org/10.3390/act12100392.

Babu Seelam A, Jawed MS, Hassan Krishanmurthy S. Design and analysis of elevator wire ropes. Int J Simul Multidiscip Des Optim [Internet]. 2021;12:20. Available from: http://dx.doi.org/10.1051/smdo/2021021.

Chen Y, Wang Q, Qin W, Xiang J. Study on the mechanical performance of a three-layered wire rope strand with a surface pit in varied corrosion direction into the wire. Eng Fail Anal [Internet]. 2022;136(106181):106181. Available from: http://dx.doi.org/10.1016/j.engfailanal.|2022.106181.

Youssef B, Meknassi M, Achraf W, Gugouch F, Lasfar S, Kane CSE, et al. The analysis of the corrosion effect on the wires of a 19*7 wire rope by two methods. Eng Fail Anal [Internet]. 2023;144(106816):106816. Available from: http://dx.doi.org/10.1016/j.engfailanal.2022.106816.

Peng Y, Wang G, Zhu Z, Chang X, Lu H, Tang W, et al. Effect of low temperature on tribological characteristics and wear mechanism of wire rope. Tribol Int [Internet]. 2021;164(107231):107231. Available from: http://dx.doi.org/10.1016/j.triboint.2021.107231.

Hu Z, Wang E, Jia F. Study on bending fatigue failure behaviors of end-fixed wire ropes. Eng Fail Anal [Internet]. 2022;135(106172):106172. Available from: http://dx.doi.org/10.1016/j.engfailanal.2022.106172.

Chang X, Peng Y, Zhu Z, Lu H, Tang W, Zhang X. Sliding friction and wear characteristics of wire rope contact with sheave under long-distance transmission conditions. Materials (Basel) [Internet]. 2022;15(20):7092. Available from: http://dx.doi.org/10.3390/ma15207092.

Peng Y, Huang K, Ma C, Zhu Z, Chang X, Lu H, et al. Friction and wear of multiple steel wires in a wire rope. Friction [Internet]. 2023;11(5):763-84. Available from: http://dx.doi.org/10.1007/s40544-022-0665-y.

Vordos N, Gkika D, Bandekas D. Wheatstone Bridge and Bioengineering. J Eng Sci Technol Rev [Internet]. 2020;13(5):4-6. Available from: http://dx.doi.org/10.25103/jestr.135.02.

General Purpose Rope 8×S (19)+ FC 8×W(19) + FC [Internet]. TAYMAX. [cited 2024 Sep 23]. Available from: http://www.taymax.co.th/product/general-purpose-rope-8xs-19-fc-8xw19-fc/?lang=th.

Oluwole OO, Olanipekun AT, Ajide OO. Design, construction and testing of a strain gauge instrument. International Journal of Scientific & Engineering Research. 2015;6(4):1825-9.

Zhao D, Gao C, Zhou Z, Liu S, Chen B, Gao J. Fatigue life prediction of the wire rope based on grey theory under small sample condition. Eng Fail Anal [Internet]. 2020;107(104237):104237. Available from: http://dx.doi.org/10.1016/j.engfailanal.2019.104237.

Zhao D, Liu YX, Ren XT, Gao JZ, Liu SG, Dong LQ, et al. Fatigue life prediction of wire rope based on grey particle filter method under small sample condition. Eksploat Niezawodn - Maint Reliab [Internet]. 2021;23(3):454-67. Available from: http://dx.doi.org/10.17531/ein.2021.3.6.

Lotfy HM, El-Shabasy AB, Attia TA, Hassan HA. Assessment of steel wire's fatigue life using finite elements modelling and experimental testing. IOP Conf Ser Mater Sci Eng [Internet]. 2020;973(1):012013. Available from: http://dx.doi.org/10.1088/1757-899x/973/1/012013.

Battini D, Solazzi L, Lezzi AM, Clerici F, Donzella G. Prediction of steel wire rope fatigue life based on thermal measurements. Int J Mech Sci [Internet]. 2020;182(105761):105761. Available from: http://dx.doi.org/10.1016/j.ijmecsci.2020.105761.

Ding P, Yang Q, Wang C, Wei X, Zhou Y. Application of improved grey model GM(1,1) in prediction of human health data. In: 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). IEEE; 2018.

Yang H, Gao M, Xiao Q. A novel fractional-order accumulation GMP(1,1) model and its application [Internet]. Research Square. 2022. Available from: http://dx.doi.org/10.21203/rs.3.rs-201981/v1.

Yılmaz O, İmrak CE. Discard fatigue life of stranded steel wire rope subjected to bending over sheave fatigue. Mech Ind [Internet]. 2017;18(2):223. Available from: https://doi.org/10.1051/meca/2016049.

Wang D, Wang B, Ge S, Wu K, Chong H, Zhang D, et al. Effects of fatigue load characteristics on bending tribo-corrosion-fatigue damage of steel wire ropes in seawater and pure water. Tribol Int [Internet]. 2025;201(110201):110201. Available from: http://dx.doi.org/10.1016/j.triboint.2024.110201.

Li C, Wang D, Sun Y, Xu W, Zhang J, Wu K, et al. Bending fatigue damage behavior of wire rope in hoisting system of drilling rig. Tribol Int [Internet]. 2023;187(108745):108745. Available from: http://dx.doi.org/10.1016/j.triboint.2023.108745.

Huang K, Peng Y, Chang X, Zhou Z, Jiang G, Lu H, et al. Fretting fatigue behavior of helical-torsional contact steel wire in wire rope. Int J Fatigue [Internet]. 2024;186(108393):108393. Available from: http://dx.doi.org/10.1016/j.ijfatigue.2024.108393.

Yang H, Gao M, Xiao Q. A novel fractional-order accumulation GMP(1,1) model and its application [Internet]. Research Square. 2022; Available from: http://dx.doi.org/10.21203/rs.3.rs-201981/v1.

Wang H, Zheng H, Tian J, He H, Ji Z, He X. Research on quantitative identification method for wire rope wire breakage damage signals based on multi-decomposition information fusion. Journal of Safety and Sustainability [Internet]. 2024;1(2):89-97. Available from: http://dx.doi.org/10.1016/j.jsasus.2024.02.001.

Wang D, Wang B, Ge S, Wu K, Chong H, Zhang D, et al. Effects of fatigue load characteristics on bending tribo-corrosion-fatigue damage of steel wire ropes in seawater and pure water. Tribol Int [Internet]. 2025;201(110201):110201. Available from: http://dx.doi.org/10.1016/j.triboint.2024.110201.

Ministerial regulation prescribing standards for the management and operations concerning safety, Occupational Health, and Working Environment related to Machinery, Cranes, and Boilers, B.E. 2564 (2021). (2021, August 6). Royal Gazette; Volume 138 (Part 52 A), p. 3-29.

The British Standards. Safety rules for the construction and installation of lifts - Part 1: Electric Lifts [Internet]. 2009. Available from: https://nobelcert.com/DataFiles/FreeUpload/EN%2081-22-2014.pdf.

Japanese Industrial Standard. Inspection standard of elevator, escalator and dumbwaiter JIS A 4302-1992 [Internet]. 1992. Available from: https://www.stdlink.com/standards/jis-a-4302-1992.html.

The British Standards. Safety rules for the construction and installation of lifts - Lifts for the transport of persons and goods Part 20: Passenger and goods passenger lifts [Internet]. 2014. Available from:https://nobelcert.com/DataFiles/FreeUpload/EN%2081-20-2014.pdf.