Development of Simple Device based on Gas Diffusion with Natural Reagent Immobilized Paper and Digital Image Colorimetry for Ammonia Determination

Main Article Content

Yaowalak Khanhuathon
Napaporn Wannaprom

Abstract

This research has developed a simple device based on gas diffusion with natural reagent immobilized on paper for ammonia determination and colorimetric detection via smart phone. The proposed method based on the reaction between ammonium chloride and sodium hydroxide to provide ammonia gas in reaction chamber, after that this gas was diffused through immobilized paper with natural reagent then the colorimetric change on the paper was measured with a smart phone. Three kinds of natural reagent (Red cabbage, orchid flower and butterfly pea flower) were investigated for suitability of immobilized on paper.  The result found that the highest sensitivity was obtained with red cabbage extracts immobilized paper. The various parameters were studied for optimum condition of ammonia determination. The suitable parameter values were 4 % w/v of red cabbage extracts concentration. Time of extraction, immobilization on paper and reaction were 15, 5 and 3 minutes, respectively. Under optimum condition, the linearity range was 1.00–
30.00 mM ammonium chloride (y = 1.31 ±0.03x + 15.34 ±0.59, R2 = 0.9955) with limit of detection and limit of quantitation were 0.24 and 0.81 mM, respectively. The precision of proposed method were studied; the results found that %RSD were less than 5 % and %recovery were found in the range of 96.8–107.0 %. The developed device was successfully applied for ammonia determination in chemical fertilizer samples. The proposed method was compared with standard method. It was found that both methods agree well with not significant different at 95 % interval levels. The developed gas detection device has many advantages such as cost-effective, simple, using natural reagent and portable device.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

1. Yuen KI, Shit FC. Ammonia production, excretion, toxicity, and defense in fish: a review. Frontiers in Physicology. 2010;1:1–20.
2. Sukaram T, Sirisakwisut P, Sirirak J, Nacapricha D, Chaneam S. Environmentally friendly method for determination of ammonia nitrogen in fertilisers and wastewaters based on flow injection-spectrophotometric detection using natural reagent from orchid flower. Int J Anal Chem. 2018;98(10):907–20.
3. Daridon A, Sequeira M, Pennarun-Thomas G, Dirac H, Krog JP, Gravesen P, et al. Chemical sensing using an integrated microfluidic system based on the Berthelot reaction. Sensor Actuat B-Chem. 2001;76(1–3):235–43.
4. Felix EP, Cardoso AA. Colorimetric determination of ammonia in air using a hanging drop. Instrum Sci Technol. 2003;31(3):283–94.
5. Lin K, Li P, Wu Q, Feng S, Ma J, Yuan D. Automated determination of ammonium in natural waters with reverse flow injection analysis based on the indophenol blue method with o-phenylphenol. Microchem J. 2018;138:519–25.
6. Demutskaya L, Kalinichenko I. Photo-metric determination of ammonium nitrogen with the nessler reagent in drinking water after its chlorination. J Water Chem Techno+. 2010;32(2):90–4.
7. Oms M, Cerda A, Cladera A, Cerdà V, Forteza R. Gas diffusion techniques coupled sequential injection analysis for selective determination of ammonium. Anal Chim Acta. 1996;318(3):251–60.
8. Segundo RA, Mesquita RBR, Ferreira MTSOB, Teixeira CFCP, Bordalo AA, Rangel AOSS. Development of a sequential injection gas diffusion system for the determination of ammonium in transitional and coastal waters. Anal Methods-UK. 2011;3(9):2049–55.
9. Jayawardane BM, McKelvie ID, Kolev SD. Development of a gas-diffusion microfluidic paper-based analytical device (μPAD) for the determination of ammonia in wastewater samples. Anal Chem. 2015;87(9): 4621–6.
10. Musile G, Gottardo R, Palacio C, Shestakova K, Raniero D, Elio F, et al. Development of a low cost gas diffusion device for ammonia detection in the vitreous humor and its preliminary application for estimation of the time since death. Forensic Sci Int. 2019;295:150–6.
11. de la Guardia M, Garrigues S. Handbook of Green Analytical Chemistry.1st ed. John Wiley & Sons, Ltd; 2012.
12. Armenta S, Garrigues S, de la Guardia M. The role of green extraction techniques in Green Analytical Chemistry. Trac-Trend Anal Chem. 2015;71:2–8.
13. Grudpan K, Hartwell SK, Wongwilai W, Grudpan S, Lapanantnoppakhun S. Exploiting green analytical procedures for acidity and iron assays employing flow analysis with simple natural reagent extracts. Talanta. 2011;84(5):1396–400.
14. MY MUL, Atika A, OA MZ, Khor P. A comparative analysis of Clitoriaternatea Linn. (ButterflyPea) flower extract as natural liquid pH indicator and natural pH paper. Dhaka University Journal of Pharmaceutical Sciences. 2018;17(1):97–103.
15. Supharoek SA, Ponhong K, Siriangkhawut W, Grudpan K. Employing natural reagents from turmeric and lime for acetic acid determination in vinegar sample. J Food Drug Anal. 2018; 26(2):583–90.
16. นภาพร วรรณาพรม, เยาวลักษณ์ ขันหัวโทน. การวิเคราะห์หาปริมาณกรดอะซิติกในตัวอย่างน้ำส้มสายชูด้วยเทคนิคแลปออนไมโครเพลทโดยใช้สารสกัดจากกะหล่ำปลีแดงเป็นรีเอเจนต์ธรรมชาติ. การประชุมวิชาการระดับชาติ นเรศวรวิจัยครั้งที่ 14: University in Disruptive Era; 1–2 พ.ย. 2561; มหาวิทยาลัยนเรศวร จ.พิษณุโลก. กองส่งเสริมการวิจัย มหาวิทยาลัยนเรศวร; 2561. น. 165–73.
17. เยาวลักษณ์ ขันหัวโทน, นภาพร วรรณาพรม.การวิเคราะห์หาปริมาณกรดซิตริกในน้ำมะนาวสังเคราะห์โดยใช้สารสกัดจากธรรมชาติจาก กลีบดอกกล้วยไม้ (Dendrobium sonia earsakul) เป็นรีเอเจนต์ร่วมกับการตรวจวัดด้วยเครื่อง PiCO- EXPLORER. การประชุมวิชาการระดับชาติด้านวิทยาศาสตร์และเทคโนโลยี ครั้งที่ 3; 18–19 ม.ค. 2562; คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยเทคโนโลยีราชมงคลสุวรรณภูมิ จ.พระนครศรีอยุธยา. คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยเทคโนโลยีราชมงคลสุวรรณภูมิ; 2562. น. 498–507.
18. Peters JJ, Almeida MIGS, Šraj LOC, McKelvie ID, Kolev SD. Development of a micro-distillation microfluidic paper based analytical device as a screening tool for total ammonia monitoring in freshwaters. Anal Chim Acta. 2019;1079:120–8.
19. Phansi P, Sumantakul S, Wongpakdee T, Fukana N, Ratanawimarnwong N, Sitanurak J, et al. Membraneless gas-separation microfluidic paper-based analytical devices for direct quantitation of volatile and non volatile compounds. Anal Chem. 2016;88(17):8749–56.
20. รัตนา วงศ์ชูพันธ์, ขวัญกมล ชูนิ่ม, เฉลิมพร ทองพูน, ณัฐพันธ์ สงวนศักดิ์บารมี. พืชมีสีกับการเป็นอินดิเคเตอร์ธรรมชาติ. Rajabhat Journal of Sciences, Humanities & Social Sciences. 2559;17:74–83.
21. Brouillard R, Dubois JE. Mechanism of the structural transformations of antho-cyanins in acidic media. Journal of American the Journal Society. 1977;9:1359–64.
22. Castaneda-Ovando A, deLourdes Pacheco-Hernández M, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA. Chemical studies of anthocyanins: a review. Food Chem. 2009;113(4):859–71.
23. Weinges K, Nader FW. Proanthocyanidins. In: Pericles Markakis, editor. Anthocyanins as food colors. 1st ed. Newyork: Academic Press A subsidiary of Harcourt Brace Javanovich; 1982. p. 111.
24. Xiu-li HE, Xue-li LI, Yuan-ping LV, Qiang HE. Composition and color stability of anthocyanin-based extract from purple sweet potato. Food Sci Tech-Brazil. 2015;35(3):468–73.