ผลของแพลทินัมบนพื้นผิวอนุภาคนาโนไทเทเนียมไดออกไซด์สำหรับกระบวนการเร่งปฏิกิริยาด้วยแสงภายใต้แสงอัลตราไวโอเวต
Semiconductor, Nanoparticles, Catalyst, Crystal structure, Methylene blue
คำสำคัญ:
สารกึ่งตัวนำ, อนุภาคนาโน, ตัวเร่งปฏิกิริยา, โครงสร้างผลึก, เมทิลีนบลูบทคัดย่อ
ผลตัวเร่งปฏิกิริยาไทเทเนียมไดออกไซด์ที่เติมด้วยแพลทินัม (Pt-TiO2) ในการย่อยสลายสารละลายเมทิลีนบลู (MB) ภายใต้แสงอัลตร้าไวโอเลต (UV) สำหรับการสังเคราะห์ตัวเร่งปฏิกิริยาด้วยวิธีโซโวเทอร์มอลร่วมกับวิธีอิมเพรกเนชันในอัตราส่วนแพลทินัม (Pt) ร้อยละ 0.5 1.0 และ 2.0 โดยน้ำหนัก (wt%) ทำการตรวจสอบสัณฐานวิทยาของตัวอย่างด้วยเทคนิคการเลี้ยวเบนรังสีเอกซ์ (XRD) กล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน (TEM) การวิเคราะห์ด้วยรังสีเอ็กซ์แบบกระจายพลังงาน (EDS) พื้นที่ผิวจำเพาะด้วยเทคนิค Brunuer Emmett and Teller (BET) และเอ็กซ์เรย์โฟโตอิเล็กตรอนสเปกโทรสโกปี (XPS) ผลการวิจัยแสดงให้เห็นว่า TiO2 มีโครงสร้างแบบอนาเทสและรูไทร์ โดยอนุภาค Pt มีเลขออกซิเดชัน 0 +2 และ +4 ที่อยู่ในรูป Pt PtO และ PtO2 กระจายอยู่บนผิว TiO2 สำหรับการทดสอบประสิทธิภาพ Pt-TiO2 ด้วยสารละลายเมทิลีนบลู (MB) เข้มข้น 10 มิลลิกรัมต่อลิตร (mg/L) ปริมาตร 50 มิลลิลิตร (mL) ภายใต้แสงอัลตราไวโอเลต (UV) พบว่าร้อยละ 1.0 wt% Pt-TiO2 แสดงประสิทธิภาพในการย่อยสลายดีที่สุดใน 150 นาที สามารถเพิ่มประสิทธิของ TiO2 ได้ร้อยละ 25
เอกสารอ้างอิง
ณัฐญา คุ้มทรัพย์, เพียงพิศ กลิ่นหรั่น, ธงชัย กลิ่นหรั่น, ปราณี ศรีกอบัว, และสถาพร คำหอม. การเตรียมตัวเร่งปฏิกิริยาแพลทินัมบนไทเทเนียมไดออกไซด์แบบท่อนาโนสำหรับปฏิกิริยาออกซิเดชันของคาร์บอนมอนอกไซด์, วารสารวิทยาศาสตร์ มข., 44(1) 164-174.
ศศิฌา จันสุ, ชีวิตา สุวรรณชวลิต, ธรวิภา พวงเพ็ชร, และณัฐวรรณ วรวรรโณทัย. (2557). การสังเคราะห์คอปเปอร์ (I) ออกไซด์ไทเทเนียมไดออกไซด์โฟโตคะตะลิสต์และสมบัติการเป็นสารเร่งปฏิกิริยาด้วยแสง. Veridian E-Journal Science and Technology Silpakorn University, 1(3), 53–67.
ศรัญญู ชัยวิเชียร. (2555). การสังเคราะห์และการหาลักษณะเฉพาะของวัสดุนาโนคอมโพสิต BiVO4 /CeO2 ชนิดใหม่เพื่อนำไปใช้เป็นตัวเร่งปฏิกิริยาด้วยแสง. (วิทยานิพนธ์ปริญญามหาบัณฑิต). มหาวิทยาลัยเชียงใหม่, คณะบัณฑิตวิทยาลัย, สาขาวิชาวัสดุศาสตร์.
Arifin, M., Roza, L., & Fauzia, V. (2019). Bayberry-like Pt nanoparticle decorated ZnO nanorods for the photocatalytic application. Results in Physics, 15, 102678.
Ahmed, L.M., Ivanova, I., Hussein, F.H., & Bahnemann, D.W. (2014). Role of platinum deposited on TiO2 in photocatalytic methanol oxidation and dehydrogenation reactions. International Journal of Photoenergy, 2014, 1–9.
Bai, Y., Li, W., Liu, C., Yang, Z., Feng, X., Lu, X., & Chan, K.-Y. (2009). Stability of Pt nanoparticles and enhanced photocatalytic performance in mesoporous Pt-(anatase/TiO2(B)) nanoarchitecture. Journal of Materials Chemistry, 19(38), 7055–7061.
Cai, Q., Hong, W., Li, J., Jian, C., & Liu, W. (2017). A silicon photoanode for efficient ethanol oxidation under alkaline conditions. RSC Advances, 7(35), 21809–21814.
Chomkitichai, W., Tamaekong, N., Liewhiran, C., Wisitsoraat, A., Sriwichai, S., & Phanichphant, S. (2012). H2 sensor based on Au/TiO2 nanoparticles synthesized by flame spray pyrolysis. Engineering Journal, 16, 135–142.
Dette, C., Miguel, A.P.-O., Kley, C.S., Punke, P., Patrick, C.E., Jacobson, P., Giustino, F., Jung, S.J., & Kern, K. (2014). TiO2 anatase with a bandgap in the visible region. Nano Lett, 14(11), 6533–8.
Ekuma, C.E., & Bagayoko, D. (2011). Ab-initio electronic and structural properties of rutile titanium dioxide. Japanese Journal of Applied Physics, 50, 101103.
Ge, L. (2008). Novel visible-light-driven Pt/BiVO4 photocatalyst for efficient degradation of methyl orange. Journal of Molecular Catalysis A: Chemical, 282(1–2), 62–66.
Gomes, J., Lopes, A., Bednarczyk, K., Gmurek, M., Stelmachowski, M., Zaleska-Medynska, A., Quinta-Ferreira, M.E., Costa, R., Quinta-Ferreira, R.M., & Martins, R. (2018). Effect of Noble Metals (Ag, Pd, Pt) Loading over the Efficiency of TiO2 during Photocatalytic Ozonation on the Toxicity of Parabens. ChemEngineering, 2(1), 4.
Hanawa, T. (2011). A comprehensive review of techniques for biofunctionalization of titanium. Journal of Periodontal & Implant Science, 41(6), 263–272.
Jansanthea, P., & Chomkitichai, W. (2019). Enhanced photocatalytic degradation of methylene blue by using Au-TiO2. Applied Mechanics and Materials, 886, 107–113.
Jansanthea, P., Chomkitichai, W., Ketwaraporn, J., Pookmanee, P., & Phanichphant, S. (2018). Flame spray pyrolysis synthesized gold-loaded titanium dioxide photocatalyst for degradation of Rhodamine B. Journal of the Australian Ceramic Society, 55, 719–727.
Jansanthea, P., Kanthabangharn, J., Chomkitichai, W., Ketwaraporn, J., Saovakon, C., Wansao, C., Wanaek, A., Kraivuttinun, P., Pookmanee, P., & Phanichphant, S. (2021). Temperature-controlled synthesis and photocatalytic properties of ZnO–SnO2 nanocomposites.Journal of the Australian Ceramic Society, 57, 579–588.
Jansanthea, P., Saovakon, C., Chomkitichai, W., Ketwaraporn, J., Maneepong, S., Chaiwong, N., Jaisee, K., Wansao, C., Wanaek, A., & Pookmanee, P. Thiamethoxam insecticide degradation with a leaf-like cupric oxide monoclinic structure synthesized via the microwave method. Russian Journal of Inorganic Chemistry, 66(5), 667–678.
Jaramillo-Páez, C.A., Navío, J.A., Hidalgo, M.C., & Macías, M. (2018). ZnO and Pt-ZnO photocatalysts: characterization and photocatalytic activity assessing by means of three substrates. Catalysis Today, 313, 12–19.
Jeyaraj, M., Gurunathan, S., Qasim, M., Kang, M.-H., & Kim, J.-H. (2019). A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials, 9(12), 1719.
Khayyat, S., & Selva, R.L. (2017). Photocatalytic degradation of benzothiophene and dibenzothiophene using supported gold nanoparticle. Journal of Saudi Chemical Society, 21(3), 349–357.
Lee, S.Y., Kang, D., Jeong, S., Do, H.T., & Kim, J.H. (2020). Photocatalytic degradation of rhodamine B dye by TiO2 and gold nanoparticles supported on a floating porous polydimethylsiloxane sponge under ultraviolet and visible light irradiation. ACS Omega, 5, 4233–4241.
Lei, M., Wu, W., Sun, L., Tian, Q., Jiang, C., & Xiao, X., (2015). Controlled preparation of hollow SnO2@M (M = Au, Ag) heterostructures through template-assist method for enhanced photocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, 276–282.
Li, D., Song, H., Meng, X., Shen, T., Sun, J., Han, W., & Wang, X. (2020). Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2. Nanomaterials, 10(3), 546.
Liu, D., Shen, J., Xie, Y., Qiu, C., Zhang, Z., Long, J., Lin, H., & Wang, X. (2021). Metallic Pt and PtO2 Dual-Cocatalyst-Loaded Binary Composite RGO-CNx for the Photocatalytic Production of Hydrogen and Hydrogen Peroxide. ACS Sustainable Chemistry & Engineering, 9(18), 6380–6389.
Lu, P.J., Fang, S.W., Cheng, W.L., Huang, S.C., Huang, M.C., & Cheng, H.F. (2018). Characterization of titanium dioxide and zinc oxide nanoparticles in sunscreen powder by comparing different measurement methods. Journal of Food and Drug Analysis, 26, 1192–1200.
Matin, M.A., Lee, E., Kim, H., Yoonc, W.-S., & Kwon, Y.-U. (2015). Rational syntheses of core–shell Fe@(PtRu)nanoparticle electrocatalysts for the methanol oxidation reaction with complete suppression of CO-poisoning and highly enhanced activity. Journal of Materials Chemistry A, 3, 17154–17164.
Matsubara, K., Inoue, M., Hagiwara, H., & Abe, T. (2019). Photocatalytic water splitting over Pt-loaded TiO2 (Pt/TiO2) catalysts prepared by the polygonal barrel-sputtering method. Applied Catalysis B: Environmental, 254, 7–14.
Mo, S.-D., & Ching, W.Y. (1995). Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Physical Review B, 51, 13023.
Nasr, O., Mohamed, O., Al-Shirbini, A.-S., & Abdel-Wahab, A.-M. (2019). Photocatalytic degradation of acetaminophen over Ag, Au and Pt loaded TiO2 using solar light. Journal of Photochemistry & Photobiology A: Chemistry, 374, 185–193.
Navale, S.T., Yang, Z.B., Liu, C., Cao, P.J., Patil, V.B., Ramgir, N.S., Mane, R.S., & Stadler, F.J. (2018). Enhanced acetone sensing properties of titanium dioxide nanoparticles with a sub-ppm detection limit. Sensors and Actuators B: Chemical, 255, 1701–1710.
Qian, R., Zong, H., Schneider, J., Zhou, G., Zhao, T., Li, Y., Yang, J., Bahnemann, D.W., & Pan, J.H. (2019). Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: An overview. Catalysis Today, 355, 78–90.
Ren, X., Hu, Z., Jin, J., Wu, L., Wang, C., Liu, J., Liu, F., Wu, M., Li, Y., Tendeloo, G.V., & Su, B.-L. (2017). Cocatalysing Pt/PtO Phase-junction nanodots on hierarchically porous TiO2 for highly enhanced photocatalytic hydrogen production. ACS Applied Materials & Interfaces, 9(35), 29687–29698.
Rokesh, K., Pandikumar, A., Mohan, S.C., & Jothivenkatachalam, K. (2016). Aminosilicate sol-gel supported zinc oxide-silver nanocomposite material for photoelectrocatalytic oxidation of methanol. Journal of Alloys and Compounds, 680, 633–641.
Rosario, A.V., & Pereira, E.C. (2014). The role of Pt addition on the photocatalytic activity of TiO2 nanoparticles: The limit between doping and metallization. Applied Catalysis B: Environmental, 144, 840–845.
Selvapriya, R., Mayandi, J., Ragavendran, V., Sasirekha V., Vinodhini, J., & Pearce, J.M. (2019). Dual morphology titanium dioxide for dye sensitized solar cells. Ceramics International, 45, 7268–7277.
Sun, Q., Li, K., Wu, S., Han, B., Sui, L., & Dong, L. (2020). Remarkable improvement of TiO2 for dye photocatalytic degradation by a facile post-treatment. New Journal of Chemistry, 44, 1942–1952.
Wanag, A., Rokicka, P., Kusiak-Nejman, E., Kapica-Kozar, J., Wrobel, R.J., Markowska-Szczupak, A., & Morawski, A.W. (2018). Antibacterial properties of TiO2 modified with reduced graphene oxide. Ecotoxicology and Environmental Safety, 147, 788–793.
Wang, Y., Fugetsu, B., Sakata, I., Fujisue, C., Kabayama, S., Tahara, N., & Morisawa, S. (2020). Monolayered platinum nanoparticles as efficient electrocatalysts for the mass production of electrolyzed hydrogen water. Scientific Reports, 10(1), 1–10.
Xiao, Z., & Laplante A.R. (2004). Characterizing and recovering the platinum group minerals-a review. Minerals Engineering, 17, 961–979.
Xie, W., Li, R., & Xu, Q. (2018). Enhanced photocatalytic activity of Se-doped TiO2 under visible light irradiation. Scientific Reports, 8(1), 1–10.
Yang, Y., Li, X., Chen, J., & Wang, L. (2004). Effect of doping mode on the photocatalytic activities of Mo/TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 163, 517–522.
Yu, C., Yang, K., Xie, Y., Fan, Q., Yu, J. C., Shu, Q., & Wang, C. (2013). Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability. Nanoscale, 5(5), 2142–2151.
Yuan, S.J., Xu, F.J., Pehkonen, S.O., Ting, Y.P., Kang, E.T., & Neoh, K.G. (2008). Biocorrosion behavior of titanium oxide/butoxide-coated stainless steel. Journal of The Electrochemical Society, 155(5), C196–C210.
Zhao, J., Ge, S., Pan, D., Shao, Q., Lin, J., Wang, Z., Hu, Z., Wu, T., & Guo, Z. (2018). Solvothermal synthesis, characterization and photocatalytic property of zirconium dioxide doped titanium dioxide spinous hollow microspheres with sunflower pollen as bio-templates. Journal of Colloid and Interface Science, 529, 111–121.
ดาวน์โหลด
เผยแพร่แล้ว
รูปแบบการอ้างอิง
ฉบับ
ประเภทบทความ
สัญญาอนุญาต
กองบรรณาธิการขอสงวนสิทธิ์ในการปรับปรุงแก้ไขตัวอักษรและคำสะกดต่างๆ ที่ไม่ถูกต้อง และต้นฉบับที่ได้รับการตีพิมพ์ในวารสาร PSRU Journal of Science and Technology ถือเป็นกรรมสิทธิ์ของคณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏพิบูลสงคราม และ
ผลการพิจารณาคัดเลือกบทความตีพิมพ์ในวารสารให้ถือมติของกองบรรณาธิการเป็นที่สิ้นสุด
