The การศึกษาอันตรกิริยาโฟตอนระหว่างแหล่งกำเนิดรังสีจากเครื่องเอกซเรย์คอมพิวเตอร์กับเนื้อเยื่อสมอง กะโหลก และผิวหนังของมนุษย์

ผู้แต่ง

  • กิตติศักดิ์ ศรีวงค์ษา The Demonstration School, Faculty of Education, Silpakorn University, Nakhon Pathom, 73000, Thailand
  • ธนบูรณ์ ริมดุสิต
  • ปารมี เลิศลิมปิยะรัตน์
  • อภิชญา คิญชกวัฒน์
  • พันธ์ศักดิ์ กล่ำกล่อมจิตร

คำสำคัญ:

ระบบสมอง, อันตรกิริยาย่อย, สัมประสิทธิ์การลดทอนเชิงมวล

บทคัดย่อ

งานนี้มีวัตถุประสงค์เพื่อศึกษาอันตรกิริยาย่อย สัมประสิทธิ์การลดทอนเชิงมวล เลขอะตอมยังผล ค่าความหนาครึ่งค่า และค่าเส้นทางอิสระเฉลี่ย โดยมุ่งไปที่การดูดกลืน และการกระเจิงของรังสีของระบบสมอง การศึกษาอันตรกิริยาโฟตอนที่พลังงาน 1 ถึง 10,000 keV ทำโดยการใช้โปรแกรมซอฟต์แวร์ WinXCOM เพื่อศึกษาอันตรกิริยาย่อย ค่าสัมประสิทธิ์การลดทอนเชิงมวล เลขอะตอมยังผล ค่าความหนาครึ่งค่า และค่าเส้นทางอิสระเฉลี่ย เพื่อเป็นข้อมูลสำคัญสำหรับนักรังสีเทคนิคนำไปวิเคราะห์เพื่อประยุกต์ใช้กับเครื่องมือภาพถ่ายทางการแพทย์ (เครื่องเอกซเรย์คอมพิวเตอร์) จากความสัมพันธ์ระหว่างค่าสัมประสิทธิ์การลดทอนเชิงมวล เลขอะตอมยังผล ค่าความหนาครึ่งค่าและค่าเส้นทางอิสระเฉลี่ยของเนื้อเยื่อสมอง กะโหลก และผิวหนัง ในช่วงพลังงานโฟตอน 1 ถึง 10,000 keV พบว่ารังสีสามารถผ่านเนื้อเยื่อสมอง ได้ดีกว่า ผิวหนัง และกะโหลก ตามลำดับ ซึ่งแสดงให้เห็นว่าอวัยวะทั้ง 3 ส่วนนั้นมีผลต่อการดูดกลืนรังสีจากการฉายเครื่องเอกซเรย์คอมพิวเตอร์ของระบบสมอง เมื่อนำไปวิเคราะห์ร่วมกับเครื่องเอกซเรย์คอมพิวเตอร์ ความสามารถในการดูดกลืนรังสีของอวัยวะทั้ง 3 ส่วนจะส่งผลต่อประสิทธิภาพ และความแม่นยำในการนับวัดผลที่ได้จากเครื่องเอกซเรย์คอมพิวเตอร์

References

Akman F, Durak R, Turhan MF. et al. Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Applied Radiation and Isotopes 2015;101:107-113.

Bonnin A, Duvauchelle P, Kaftandjian V. et al. Concept of effective atomic number and effective mass density in dual-energy X-ray computed tomography. Nuclear Instruments and Methods in Physics Research B 2014;318:223-231.

Chaiphaksa W, Limkitjaroenporn P, Kim HJ. et al. The mass attenuation coefficients, effective atomic numbers and effective electron densities for GAGG:Ce and CaMoO4 scintillators. Progress in Nuclear Energy 2016;92:48-53.

Duck FA. Physical Properties of Tissues: A Comprehensive Reference Book. United Kingdom: Academic Pres; 2013.

Gerward L, Guilbert N, Jensen KB, Levring H. WinXCom-a Program for Calculating X-Ray Attenuation Coefficients. Radiation Physics and Chemistry 2004;71:653-654.

Günay O, Gündogdu Ö, Demir M. et al. Determination of the Radiation Dose Level in Different Slice Computerized Tomography, International Journal of Computational and Experimental Science and Engineering 2019;5(3):119-123.

Günay O, Sarihan M, Abamor E. et al. Environmental Radiation Doses from Patients Undergoing Tc-99m DMSA Cortical Renal Scintigraphy. International Journal of Computational and Experimental Science and Engineering 2019;5(3):86-93.

Issa SAM. Effective atomic number and mass attenuation coefficient of PbO-BaO-B2O3 glass system. Radiation Physics and Chemistry 2016;120:33-37.

Kumar A. Studies on effective atomic numbers and electron densities of nucleobases in DNA. Radiation Physics and Chemistry 2016;127:48-55.

Lama LSD, Soares LDH, Antoniassi M. et al. Effective atomic numbers for materials of medical interest at low photon energy using the Rayleigh to Compton scattering ratio. Nuclear Instruments and Methods in Physics Research A 2015;784:597-601.

Limkitjaroenporn P, Kaewkhaoa J, Chewpraditkul W. et al. Mass Attenuation Coefficient and Effective Atomic Number of Ag/Cu/Zn Alloy at Different Photon Energy by Compton Scattering Technique. Procedia Engineering 2012;32:847-854.

Morato S, Garcia C, Juste B. et al. MCNPX Simulation for Radiation Dose Absorption of Anatomical Regions and Some Organs, Acta Physica Polonica A. 2020; 137: 561-565.

Önder P, Tursucu A, Demir D. et al. Studies on mass attenuation coefficient, effective atomic number and electron density of some thermo luminescent dosimetric compounds. Nuclear Instruments and Methods in Physics Research B 2012;92:1-10.

Ozan TH, Cavli B, Ebru AE. et al. An Investigation on Radiation Protection and Shielding Properties of 16 Slice Computed Tomography (CT) Facilities. International Journal of Computational and Experimental Science and Engineering 2018;4(2):37-40.

Paul EC, Kristen M, Waterstram R. Nuclear Medicine and PET/CT Technology and Techniques. 7th. St Louis, United States: MOSBY; 2011.

Peixoto PHR, Vieira JW, Yoriyaz H. et al. Photon and electron absorbed fractions calculated from a new tomographic rat model, Physics in Medicine & Biology 2008;53(19):5343-5355.

Salvado M, Lopez M, Morant JJ. et al. Monte Carlo calculation of radiation dose in CT examinations using phantom and patient tomographic models, Radiation Protection Dosimetry 2005;114:364-368.

Singh K, Singh H, Sharma V. et al. Gamma-ray attenuation coefficient in bismuth borate glass, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2002;194(1):1-6.

Tekin HO, Manici T. Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code. Nuclear Science and Techniques 2017;28(95):1-4.

Tekin HO, Singh VP, Altunsoy EE. et al. Mass Attenuation Coefficients of Human Body Organs using MCNPX Monte Carlo Code, Iranian Journal of Medical Physics 2017;14(4):229-240.

Yahsi ÇY, Orhan KH. Investigation from Different Calculation Solutions In Vertebra Plans And The Reliability Of Different Dose Rate Dose. International Journal of Computational and Experimental Science and Engineering 2019;5(3):135-138.

Yahsi ÇY, Orhan KH. Investigation of the Effect of Intermediate Dose Calculation Module on Dose Dıstrıbutıon in Lung Cancer Radiotherapy Patients. International Journal of Computational and Experimental Science and Engineering 2019;5(3):142-146.

Yoriyaz H, Stabin MG, Dos Santos A. Monte Carlo MCNP-4B–Based Absorbed Dose Distribution Estimates for Patient-Specific Dosimetry. Journal of Nuclear Medicine 2001;42:662-669.

Downloads

เผยแพร่แล้ว

2021-04-29

How to Cite

ศรีวงค์ษา ก. ., ริมดุสิต ธ. ., เลิศลิมปิยะรัตน์ ป. ., คิญชกวัฒน์ อ., & กล่ำกล่อมจิตร พ. . (2021). The การศึกษาอันตรกิริยาโฟตอนระหว่างแหล่งกำเนิดรังสีจากเครื่องเอกซเรย์คอมพิวเตอร์กับเนื้อเยื่อสมอง กะโหลก และผิวหนังของมนุษย์. Life Sciences and Environment Journal, 22(1), 36–47. สืบค้น จาก https://ph01.tci-thaijo.org/index.php/psru/article/view/242807