• Kittisak Sriwongsa The Demonstration School, Faculty of Education, Silpakorn University, Nakhon Pathom, 73000, Thailand
  • Tanaboon Rimdusit
  • Paramee Lertlompiyarat
  • Apichaya Kiinchohawat
  • Punsak Klumklomchit
Keywords: Nervous system, Interaction, Mass attenuation coefficient


This work aims to study partial interaction, mass attenuation coefficient, effective atomic number, half value layer and mean free path by focus the absorption and scattering radiation of nervous system. The study of photon interaction at energies 1–10,000 keV by the WinXCOM software program for studying partial interaction, mass attenuation coefficient, effective atomic number, half value layer and mean free path. These data are important parameters for radiologists to analysis and apply for using with computerized tomography. The relationship of mass attenuation coefficient, effective atomic number, half value layer and mean free path of brain, cranium and skin in photon energies ranging 1–10,000 keV found that photon radiation passes through more than skin and cranium, respectively. The results indicated that all three of the organs effectively absorb radiation from nervous system computerized tomography. When analyzed with computed tomography, the absorption of all three of the organs will affect the efficiency and accuracy in measuring the results from computed tomography.


Download data is not yet available.


H.O. Tekin, T. Manici, Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code. Nucl. Sci. Techn. 2017;28, 95 .
Paul E. Christian, Kristen M. Waterstram-Rich. Nuclear Medicine and PET/CT Technology and Techniques. 7th, ELESEVIER MOSBY. 2011.
H. Yoriyaz, M.G. Stabin, A. dos Santos, Monte Carlo MCNP-4B–Based Absorbed Dose Distribution Estimates for Patient-Specific Dosimetry. J. Nucl. Med. 2001; 42, 662.
M. Salvado, M. Lopez, J.J. Morant, A. Calzado, Monte Carlo calculation of radiation dose in CT examinations using phantom and patient tomographic models. Radiat. Protect. Dosim. 2005;114, 364.
P.H.R. Peixoto, J.W. Vieira, H. Yoriyaz, F.R.A. Lima, Photon and electron absorbed fractions calculated from a new tomographic rat model. Phys. Med. Biol. 2008;53, 5343.
S. Morato, C. Garcia, B. Juste, R. Miro, G. Verdu, MCNPX Simulation for Radiation Dose Absorption of Anatomical Regions and Some Organs. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2017; 560.
H.O. Tekin, V.P. Singh, E.E. Altunsoy, T. Manici, M.I. Sayyed, Mass Attenuation Coefficients of Human Body Organs using MCNPX Monte Carlo Code. Iran. J. Med. Phys. 2017;14, 229.
O. Günay, Ö. Gündogdu, M. Demir, M. Abuqbeitah, D. Yasar, S. Aközcan, E. Kapdan, O. Yarar. Determination of the Radiation Dose Level in Different Slice Computerized Tomography. IJCESEN 5. 2019; 119.
Y. Yahsi Çelen, H. Orhan Kizilkaya. Investigation of The Effect of Intermediate Dose Calculation Module on Dose Dıstrıbutıon in Lung Cancer Radiotherapy Patients. IJCESEN 5. 2019; 142.
O. Günay, M. Sarihan, E. Abamor, O. Yarar. Environmental Radiation Doses from Patients Undergoing Tc-99m DMSA Cortical Renal Scintigraphy. IJCESEN 5. 2019;86.
H. Ozan Tekin, B. Cavli, E. Ebru Altunsoy, T. Manici, C. Ozturk, H. Muammer Karakas. An Investigation on Radiation Protection and Shielding Properties of 16 Slice Computed Tomography (CT) Facilities. IJCESEN 4. 2018; 37.
Y. Yahsi Çelen, H. Orhan Kizilkaya. Investigation From Different Calculation Solutions In Vertebra Plans And The Reliability Of Different Dose Rate Dose. IJCESEN 5. 2019; 135.
Limkitjaroenporn, P., Kaewkhaoa, J., Chewpraditkul, W. and Limsuwan, P. 2012. Mass Attenuation Coefficient and Effective Atomic Number of Ag/Cu/Zn Alloy at Different Photon Energy by Compton Scattering Technique. Procedia Engineering, vol.32: 847-854.
Önder P, Tursucu A, Demir D, Gürol A. Studies on mass attenuation coefficient, effective atomic number and electron density of some thermoluminescent dosimetric compounds. Nuclear Instruments and Methods in Physics Research B. 2012;vol.292: 1–10.
Bonnin A, Duvauchelle P, Kaftandjian V, Ponard P. Concept of effective atomic number and effective mass density in dual-energy X-ray computed tomography. Nuclear Instruments and Methods in Physics Research B. 2014;vol.318: 223–231.
Akman F, Durak R, Turhan M. F., Kaçal M.R. Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Applied Radiation and Isotopes. 2015;vol.101: 107–113.
Lama L. S. D., Soares L. D. H., Antoniassi M, Poletti M. E. Effective atomic numbers for materials of medical interest at low photon energy using the Rayleigh to Compton scattering ratio. Nuclear Instruments and Methods in Physics Research A. 2015;vol.784: 597–601.
Kumar A. Studies on effective atomic numbers and electron densities of nucleobases in DNA. Radiation Physics and Chemistry. 2016; vol.127: 48–55.
Issa S. A. M. Effective atomic number and mass attenuation coefficient of PbO-BaO-B2O3 glass system. Radiation Physics and Chemistry. 2016;vol. 120: 33–37.
Chaiphaksa W, Limkitjaroenporn P, Kim H.J., Kaewkhao J. The mass attenuation coefficients, effective atomic numbers and effective electron densities for GAGG:Ce and CaMoO4 scintillators. Progress in Nuclear Energy. 2016;vol.92: 48-53.
Duck F.A. Physical Properties of Tissues: A Comprehensive Reference Book, Academic Press. 2013.
White G, Wilson I. “Photon, Electron, Proton andNeutron Interaction Data for Body Tissues”, ICRU-46 Report, Bethesda (MD). 1992.
Cherdsak Bootjomchai, Jintana Laopaiboon, Chadet Yenchai and Raewat Laopaiboon. Gamma-ray shielding and structural properties of barium–bismuth–borosilicate glasses. Radiation Physics and Chemistry. 2012;81(1), 785–790.
Gerward L, Guilbert N, Jensen K.B., Levring H. WinXCom-a Program for Calculating X-Ray Attenuation Coefficients. Radiation Physics and Chemistry. 2004;71, 653-654.
How to Cite
Sriwongsa, K., Rimdusit, T., Lertlompiyarat, P., Kiinchohawat, A., & Klumklomchit, P. (2021). THE INTERACTION STUDY BETWEEN RADIATIONS FROM COMPUTERIZED TOMOGRAPHY WITH BRAIN, CRANIUM AND SKIN OF HUMAN. Life Sciences and Environment Journal, 22(1), 36-47. Retrieved from
Research Articles