ผลของวิธีการสังเคราะห์ตัวเร่งปฏิกิริยาเงินบนไทเทเนียมไดออกไซด์ต่อความว่องไวในปฏิกิริยาคาร์บอนมอนอกไซด์ออกซิเดชัน
DOI:
https://doi.org/10.55003/ETH.410109คำสำคัญ:
เงิน, ไทเทเนียมไดออกไซด์, คาร์บอนมอนอกไซด์ออกซิเดชันบทคัดย่อ
ตัวเร่งปฏิกิริยาเงินบนตัวรองรับไทเทเนียมไดออกไซด์ถูกสังเคราะห์ขึ้นด้วยวิธีการที่แตกต่างกันสามวิธีเพื่อเปรียบเทียบความว่องไวในการเร่งปฏิกิริยาคาร์บอนมอนอกไซด์ออกซิเดชัน ตัวเร่งปฏิกิริยาเงินร้อยละ 10 โดยโมล ถูกเตรียมด้วยวิธีฝังตัวแบบเปียก โดยวิธีแรกตัวเร่งปฏิกิริยาเงินถูกฝังตัวบนไทเทเนียมไดออกไซด์แบบอนุภาค (Ag/TNP) ในขณะที่วิธีที่สองตัวเร่งปฏิกิริยาเงินถูกฝังตัวบนไทเทเนียมไดออกไซด์แบบท่อนาโน (Ag/TNT) ส่วนวิธีที่สามตัวเร่งปฏิกิริยาเงินถูกฝังตัวบนไทเทเนียมไดออกไซด์แบบอนุภาคก่อนนำไปทำให้มีโครงสร้างแบบท่อนาโน (Ag/TNP-TNT) ตัวเร่งปฏิกิริยา Ag/TNP และ Ag/TNT มีการกระจายตัวของอนุภาคเงินได้ดีบนพื้นผิวของไทเทเนียมไดออกไซด์โดยมีขนาดเฉลี่ยไม่เกิน 5 นาโนเมตร ในขณะที่ตัวเร่งปฏิกิริยา Ag/TNP-TNT มีการกระจายตัวของโลหะเงินน้อยมาก การที่โลหะเงินกระจายตัวได้ดีบนไทเทเนียมไดออกไซด์นั้นส่งผลให้มีตำแหน่งว่องไว (Ag0) จำนวนมากบนพื้นผิว ในการทดสอบความว่องไวในปฏิกิริยาคาร์บอนมอนอกไซด์ออกซิเดชันพบว่าของตัวเร่งปฏิกิริยา Ag/TNT มีความว่องไวสูงกว่าตัวเร่งปฏิกิริยา Ag/TNP และ Ag/TNT เนื่องจากมีตำแหน่งว่องไวมากที่สุด (2.20 x1020 atom/g-catalyst) โดยให้ค่าร้อยละการเปลี่ยนของคาร์บอนมอนอกไซด์ร้อยละ 100 ที่อุณหภูมิ 125°C
References
S. Dey and G. C. Dhal, “Materials progress in the control of CO and CO2 emission at ambient conditions: An overview,” Materials Science for Energy Technologies, vol. 2, no. 3, pp. 607–623, 2019, doi: 10.1016/j.mset.2019.06.004.
H. Jiang, S. Zhang, X. Bi, W. Ma and Z. Wei, “Proarrhythmic effects of carbon monoxide in human ventricular tissue: insights from computational modeling,” Computers in Biology and Medicine, vol. 140, 2022, Art. no. 105066, doi: 10.1016/j.compbiomed.2021.105066.
Y. Zhao, X. Zhang and Z. Yang, “Efficient capturing and oxidation of CO through bimetallic surface alloying on WC (0001),” Journal of Alloys and Compounds, vol. 844, 2020, Art. no. 156125, doi: 10.1016/j.jallcom.2020.156125.
S. Dey and G. C. Dhal, “Property and structure of various platinum catalysts for low-temperature carbon monoxide oxidations,” Materialstoday Chemistry, vol. 16, 2020, Art. no. 100228, doi: 10.1016/j.mtchem.2019.100228.
E. M. Slavinskaya, A. I. Stadnichenko, J. E. Q. Domínguez, O. A. Stonkus, M. Vorokhta, B. Šmíd, P. Castro-Latorre, A. Bruix, K. M. Neyman and A. I. Boronin, “States of Pt/CeO2 catalysts for CO oxidation below room temperature,” Journal of Catalysis, vol. 421, pp. 285–299, 2023, doi: 10.1016/j.jcat.2023.03.004.
H. C. Song, S. Oh, S. H. Kim, S. W. Lee, S. Y. Moon, H. Choi, S. Kim, Y. Kim, J. Oh and J. Y. Park, “The effect of the oxidation states of supported oxides on catalytic activity: CO oxidation studies on Pt/cobalt oxide,” Chemical Communications, vol. 55, no. 64, pp. 9503–9506, 2019, doi: 10.1039/C9CC03770E.
H. M. Altass, S.A. Ahmed, R.S. Salama, Z. Moussa, R. S. Jassas, R. I. Alsantali, M. M. Al-Rooqi, A. A. Ibrahim, M. A. Khder, M. Morad et al., “Low Temperature CO Oxidation Over Highly Active Gold Nanoparticles Supported on Reduced Grapheme Oxide@Mg-BTC Nanocomposite,” Catalysis Letters, vol. 153, pp. 876–886, 2023, doi: 10.1007/s10562-022-04026-y.
Y. -Q. Su, Y. -Y. Qin, T. Wu and D. -Y. Wu, “Structure sensitivity of ceria-supported Au catalysts for CO oxidation,” Journal of Catalysis, vol. 407, pp. 353–363, 2022, doi: 10.1016/j.jcat.2022.02.008.
V. V. Dutov, G. V. Mamontov, V. I. Zaikovskii, L. F. Liotta and O. V. Vodyankina, “Low-temperature CO oxidation over Ag/SiO2 catalysts: effect of OH/Ag ratio,” Applied Catalysis B: Environmental, vol. 221, pp. 598–609, 2018, doi: 10.1016/j.apcatb.2017.09.051.
E. Kolobova, A. Pestryakov, G. Mamontov, Y. Kotolevich, N. Bogdanchikova, M. Farias, A. Vosmerikov, L. Vosmerikova and V. Cortes Corberan, “Low-temperature CO oxidation on Ag/ZSM-5 catalysts: Influence of Si/Al ratio and redox pretreatments on formation of silver active sites,” Fuel, vol. 188, pp. 121–131, 2017, doi: 10.1016/j.fuel.2016.10.037.
R. M. Al Soubaihi, K. M. Saoud and J. Dutta, “Low-temperature CO oxidation by silver nanoparticles in silica aerogel mesoreactors,” Chemical Engineering Journal, vol. 455, 2023, Art. no. 140576, doi: 10.1016/j.cej.2022.140576.
K. D. Rasamani, “Composite nanostructures as effective catalysts for visible-light-driven chemical transformations,” Ph.D. dissertation, Chemist. Dept., Temple Univ., Philadelphia, PA, USA, 2020.
M. Lamoth, M. Plodinec, L. Scharfenberg, S. Wrabetz, F. Girgsdies, T. Jones, F. Rosowski, R. Horn, R. Schlögl and E. Frei, “Supported Ag nanoparticles and clusters for CO oxidation: Size effects and influence of the silver-oxygen interactions,” ACS Applied Nano Materials, vol. 2, no. 5, pp. 2909–2920, 2019, doi: 10.1021/acsanm.9b00344.
A. F. Zedan, N. K. Allam and S. Y. AlQaradawi, “A Study of Low-Temperature CO Oxidation over Mesoporous CuO-TiO2 Nanotube CATALYSTS,” Catalysts, vol. 7, no. 5, 2017, Art. no. 129, doi: 10.3390/catal7050129.
Y. Sun, Y. Gao, C. He, W. Song, Z. Jiang, R. Albilali and B. Bai, “Efficient and stable low-temperature CO oxidation over Pt/In–SnO2 composite triggered by abundant oxygen vacancies and adsorption sites,” Catalysis Science & Technology, vol. 11, pp. 3762–3774, 2021, doi: 10.1039/D1CY00112D.
N. Comsup, J. Panpranot and P. Praserthdam, “The influence of Si-modified TiO2 on the activity of Ag/TiO2 in CO oxidation,” Journal of Industrial and Engineering Chemistry, vol. 16, no.5, pp. 703–707, 2010, doi: 10.1016/j.jiec.2010.07.015.
M. Abdullah and S. K. Kamarudin, “Influence of highly concentrated sodium hydroxide (NaOH) towards formation of highly ordered TiO2 nanotubes (TNT) structure,” Malaysian Journal of Analytical Sciences, vol. 20, no 6, pp. 1405–1412, 2016, doi: 10.17576/mjas-2016-2006-20.
M. Á. L. Zavala, S. A. L. Morales and M. Ávila-Santos, “Synthesis of stable TiO2 nanotubes: Effect of hydrothermal treatment, acid washing and annealing temperature,” Heliyon, vol. 3, no. 11, 2017, Art. no. e00456, doi: 10.1016/j.heliyon.2017.e00456.
E. Jalali, S. Maghsoudi and E. Noroozian, “A novel method for biosynthesis of different polymorphs of TiO2 nanoparticles as a protector for Bacillus thuringiensis from Ultra Violet,” Scientific Reports, vol. 10, no. 1, 2020, Art. no. 426, doi: 10.1038/s41598-019-57407-6.
R. Camposeco, M. Hinojosa-Reyes, S. Castillo, N. Nava and R. Zanella, “Synthesis and characterization of highly dispersed bimetallic Au-Rh nanoparticles supported on titanate nanotubes for CO oxidation reaction at low temperature,” Environmental Science and Pollution Research, vol. 28, pp. 10734–10748, 2021, doi: 10.1007/s11356-020-11341-7.
M. Mendez-Cruz, J. Ramirez-Solis, and R. Zanella, “CO oxidation on gold nanoparticles supported over titanium oxide nanotubes,” Catalysis Today, vol. 166, no. 1, pp. 172–179, 2011, doi: 10.1016/j.cattod.2010.06.014
B. Zhu, X. Zhang, S. Wang, S. Zhang, S. Wu and W. Huang, “Synthesis and catalytic performance of TiO2 nanotubes-supported copper oxide for low-temperature CO oxidation,” Microporous and Mesoporous Materials, vol. 102, no. 1–3, pp. 333–336, 2007, doi: 10.1016/j.micromeso.2006.11.028.
L. Usgodaarachchi, C. Thambiliyagodage, R. Wijesekera, S. Vigneswaran and M. Kandanapitiye, “Fabrication of TiO2 Spheres and a Visible Light Active α-Fe2O3/TiO2-rutile/TiO2-Anatase Heterogeneous Photocatalyst from Natural Ilmenite,” ACS Omega, vol. 7, no. 31, pp. 27617–27637, 2022, doi: 10.1021/acsomega.2c03262.
A. Rajabi, M. J. Ghazali, E. Mahmoudi, A. H. Baghdadi, A. W. Mohammad, N. M. Mustafah, H. Ohnmar and A. S. Naicker, “Synthesis, Characterization, and Antibacterial Activity of Ag2O-Loaded Polyethylene Terephthalate Fabric via Ultrasonic Method,” Nanomaterials, vol. 9, no. 3, 2019, Art. no. 450, doi:10.3390/nano9030450.
B. Gauri, K. Vidya, D. Sharada and W. Shobha, “Synthesis and Characterization of Ag/AgO Nanoparticles as alcohol sensor,” Research Journal of Chemistry and Environment, vol. 20, no. 10, pp. 1–5, 2016.
J. Fowsiya and G. Madhumitha, “Biomolecules Derived from Carissa edulis for the Microwave Assisted Synthesis of Ag2O Nanoparticles: A Study Against S. incertulas, C. medinalis and S. mauritia,” Journal of Cluster Science, vol. 30, pp. 1243–1252, 2019, doi: 10.1007/s10876-019-01627-3.
G. I. N. Waterhouse, G. A. Bowmaker and J. B. Metson, “The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study,” Physical Chemistry Chemical Physics, vol. 3, no. 17, pp. 3838–3845, 2001, doi: 10.1039/B103226G.
N. Issei, N. Hidetsugu, H. Toshiyuki and K. Shuichi. “The Thermal Decomposition and Reduction of Silver(I) Oxide,” Bulletin of the Chemical Society of Japan, vol. 47, no. 8, pp. 1827–1832, 1974, doi: 10.1246/bcsj.47.1827.
D. A. Purta, M. A. Portnoff, F. Pourarian, M. A. Nasta and J. Zhang, “Catalyst for the Treatment of Organic Compounds,” U. S. Patent 2004/0077485 A1, Apr. 22, 2004.
Downloads
เผยแพร่แล้ว
How to Cite
ฉบับ
บท
License
Copyright (c) 2024 คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหาร

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของคณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับสถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง และคณาจารย์ท่านอื่นๆในสถาบันฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว