A Body-Fitted Finite Difference Method for Heat Conduction Analysis

Authors

  • ภาสกร เวสสะโกศล ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์
  • จารุวัตร เจริญสุข ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

Keywords:

Body-Fitted Coordinate, Finite Difference Method, Heat conduction

Abstract

This paper illustrates the implementation and performance of Body-Fitted Finite Difference Method in simulating the steady two-dimensional heat conduction problems. Firstly, the initial grid is generated by the Transfinite Interpolation (TFI) technique. Then, the good quality mesh is obtained by smoothing the initial grid by the elliptic grid generator. The numerical solution is done by the system of finite difference equations written on the Body-Fitted Coordinate (BFC) and the thermal conditions assigned on the domain boundaries. It can be seen that the present method can accurately solve the heat conduction problems in complex geometries.

References

M., Vinokur, Conservation Equations of Gas Dynamics in Curvilinear Coordinate Systems, Journal of Computational Physics, vol. 14, pp. 105-125, 1992.

J. F., Thompson, F.C., Thames and C. W. Mastin, Automatic Numerical Generation of Body-Fitted Curvilinear Coordinates System for Field Containing any Number of Arbitrary Two-dimensional Bodies, Journal of Computational Physics, vol. 15, pp. 299-319, 1974.

W.N., Gordon and C.A., Hall, Construction of Curvilinear Coordinate Systems, International Journal of Numerical Methods in Engineering, vol. 7, pp.461-477, 1973.

S., Putivisutisak and S., Prasertlarp, Calculation of Heat Transfer and Fluid Flow in Complex Geometries Using a Finite Volume Method in Body-Fitted Coordinates, KNUTNB Int. J. Appl. Sci. Technol., vol. 6, no. 3, pp. 1-9, Jul.-Sep., 2013.

D.V., Nance, Finite Volume Algorithms for Heat Conduction, Air Force Research Laboratory, 2010.

Downloads

Published

2018-06-29

How to Cite

[1]
เวสสะโกศล ภ. and เจริญสุข จ., “A Body-Fitted Finite Difference Method for Heat Conduction Analysis”, Eng. & Technol. Horiz., vol. 35, no. 2, pp. 8–13, Jun. 2018.

Issue

Section

Research Articles