การใช้เม็ดไคโตซานดัดแปรเป็นตัวดูดซับน้ำมันหล่อเย็นชนิดผสมน้ำ

Main Article Content

พรพิมล จารุพนาเวช
โกวิทย์ ปิยะฆังคลา

บทคัดย่อ

งานวิจัยนี้ศึกษาการบำบัดน้ำมันหล่อเย็นชนิดผสมน้ำด้วยกระบวนการดูดซับแบบแบตซ์ในระดับห้องปฏิบัติการ โดยได้แบ่งการทดลองออกเป็น 2 ส่วน ส่วนแรก ศึกษาความสามารถและร้อยละการดูดซับของตัวดูดซับที่แตกต่างกัน 3 ชนิด ได้แก่ ผงไคโตซาน เม็ดไคโตซาน และเม็ดไคโตซานดัดแปร ส่วนที่สอง ศึกษาปริมาณเม็ดไคโตซานดัดแปรที่เหมาะสมสำหรับการดูดซับน้ำมันหล่อเย็นชนิดผสมน้ำ จากการศึกษาสมบัติทางเคมีด้วยการวิเคราะห์ประจุที่ผิวเป็นศูนย์ของตัวดูดซับ เพื่อตรวจสอบค่าความเป็นกรด-เบสที่ทำให้ผลรวมของประจุบนพื้นผิวตัวดูดซับเท่ากับศูนย์ สำหรับการดูดซับน้ำมันหล่อเย็นชนิดผสมน้ำที่มีค่าความเป็น-เบสเท่ากับ pH 8.90 พบว่า ผงไคโตซาน เม็ดไคโตซาน และเม็ดไคโตซานดัดแปรมีค่าประจุที่ผิวเป็นศูนย์เท่ากับ pH 8.90, 4.10 และ 1.98 ตามลำดับ การใช้ตัวดูดซับปริมาณเท่ากันที่ 2.0 กรัม และความเข้มข้นเริ่มต้นน้ำมันหล่อเย็นเท่ากับ 11,540 มิลลิกรัมต่อลิตร พบว่า เม็ดไคโตซานดัดแปรมีร้อยละการดูดซับสูงสุดเท่ากับ 100 ขณะที่ผงไคโตซาน และเม็ดไคโตซานมีร้อยละการดูดซับเท่ากับ 0 และ 19 ตามลำดับ เนื่องจาก ประจุที่ผิวของเม็ดไคโตซานดัดแปรมีโปรตอนของกรดไฮโดรคลอริกที่ใช้ในการดัดแปรมาเกาะที่ผิวของเม็ดไคโตซานดัดแปร ไอโซเทอมการดูดซับสอดคล้องกับสมการฟรุนดิช

Article Details

บท
บทความวิจัย ด้านวิทยาศาสตร์ประยุกต์

References

S. Q. A. Rizvi, A comprehensive review of lubricant chemistry, technology, selection, and design. Baltimore: ASTM International, 2009.

R. Katna, M. Suhaib, and N. Agrawal, “Nonedible vegetable oil-based cutting fluids for machining processes – a review,” Materials and Manufacturing Processes, vol. 35, no. 1, pp. 1–32, 2019.

E. Brinksmeier, D. Meyer, A. G. Huesmann- Cordes, and C. Herrmann, “Metalworking fluids—Mechanisms and performance,” CIRP Annals - Manufacturing Technology, vol. 64, no. 2, pp. 605–628, 2015.

J. E. Anderson, B. R. Kim, S. A. Mueller, and T. V. Lofton, “Composition and analysis of mineral oils and other organic compounds in metalworking and hydraulic fluids,” Critical Reviews in Environmental Science and Technology, vol. 33, no. 1, pp. 73–109, 2003.

L. Mathurasa, “Metalworking fluid: Environmental effects and treatment methods,” Burapha Science Journal, vol. 23, no. 1, pp. 221–236, 2018 (in Thai).

E. Kuram, B. Ozcelik, and E. Demirbas, Environmentally friendly machining: vegetable based cutting fluids. Berlin: Springer-Verlag Berlin Heidelberg, 2013.

M. Schwarz, M. Dado, R. Hnilica, and D. Veverkava, “Environmental and health aspects of metalworking fluid use,” Polish Journal of Environmental Studies, vol. 24, no. 1, pp. 37–45, 2014.

W. Champreecha, A. Pranudta, and K. Piyamongkala, “Equilibrium and batch design studied for cutting fluid adsorption onto sugarcane bagasse and modified sugarcane bagasse,” The Journal of KMUTNB, vol. 27, no. 1, pp. 1–13, 2016 (in Thai).

P. Lekprasert, R. Chunjaroen and K. Piyamongkala, “Continuous adsorption of cutting fluid by modified rice husk,” Engineering Journal Chiang Mai University, vol. 25, no. 1, pp. 1–10, 2016 (in Thai).

A. Katiyar, A. K. Singh, and U. K. Sharma, “Utilization of waste material: pumpkin seed waste, as an efficient adsorbent for the removal of metal cutting fluids from aqueous medium/ industrial waste water,” International Journal of Engineering and Technical Research, vol. 2, no. 5, pp. 352–358, 2014.

A. Katiyar, A. K. Singh, and L. K. Singh, “A new efficient method for removal of metal cutting fluids from machining waste water,” International Journal of Engineering and Technical Research, Special Issue, pp. 313– 318, 2014.

R. Ramya, J. Venkatesan, S. K. Kim, and P. N. Sudha, “Biomedical application of chitosan: An overview,” Journal of Biomaterials and Tissue Engineering, vol. 2, no. 2, pp. 100–111, 2012.

M. Kostag, and O. A. El Seoud, “Sustainable biomaterials based on cellulose, chitin and chitosan composites - A review,” Carbohydrate Polymer Technologies and Applications, vol. 2, pp. 100079, 2021.

L. Pietrelli, I. Francolini, A. Piozzi, M. Sighicelli, I. Silvestro, and M. Vocciante, “Chromium (III) removal from wastewater by chitosan flakes,” Applied Sciences, vol. 10, no. 6, pp. 1925, 2020.

V. L. Wong, S. Y. Tay, and S. S. Lim, “Enhanced removal of methyl orange from aqueous solution by chitosan-CaCl2 beads,” IOP Conference Series: Materials Science and Engineering, 2020, vol. 736, pp. 022049.

A. L. Ahmad, S. Sumathi, and B. H. Hameed, “Chitosan: A natural biopolymer for the adsorption of residue oil from Oily Wastewater,” Adsorption Science and Technology, vol. 22, no. 1, pp. 75–88, 2003.

K. Piyamongkala, L. Mekasut, and S. Pongstabodee, “Cutting fluid effluent removal by adsorption on chitosan and SDS- modified chitosan,” Macromolecular Research, vol. 16, no. 6, pp. 492–502, 2008.

N. Puangpun, I. Suwimon, and K. Piyamongkala, “Adsorption soluble cutting fluid emulsion by modified chitosan with SLES,” Applied Science and Engineering Progress, vol. 12, no. 4, pp. 243–252, 2019.

N. T. T. Hai, L. H. Thu, N. T. T. Nga, T. T. Hoa, L. N. A Tuan, D. V. Phu, and N. Q. Hien, “Preparation of chitooligosaccharide by hydrogen peroxide degradation of chitosan and Its effect on soybean seed germination,” Journal of Polymers and the Environment, vol. 27, pp. 2098–2104, 2019.

J. Kluczka, G. Dudek, A. Kazek-Kesik, M. Gnus, M. Krzywiecki, K. Mitko, and K. Krukiewicz, “The use of lanthanum ions and chitosan for boron elimination from aqueous solutions,” Polymers, vol. 11, no. 4, pp. 718, 2019.

M. V. Lopez-Ramon, F. Stoeckli, C. Moreno- Castilla, and F. Carrasco-Marin, “On the characterization of acidic and basic surface sites on carbons by various techniques,” Carbon, vol. 37, no. 8, pp. 1215–1221, 1999.

T. Kim and B. An, “Effect of hydrogen ion presence in adsorbent and solution to enhance phosphate adsorption,” Applied Sciences, vol. 11, no. 6, pp. 2777, 2021.

A. Sawain, W. Taweepreda, U. Puetpaiboon, and C. Suksaroj, “The effect of pH on the stability of grease and oil in wastewater from biodiesel production process,” presented at the 10th Annual Conference of Thai Society of Agricultural Engineering, Nakhon Ratchasima, Thailand, Apr. 1–3, 2009 (in Thai).

C. T. H. Nam, N. T. T. Hien, N. T. T. Huyen, H. H. Hiep, and N. T. Thuong, “Treatment of cutting oil-in-water emulsion by combining flocculation and fenton oxidation,” Journal of Chemistry, vol. 2021, pp. 1–9, 2021.

I. A. W. Tan, M. O. Abdullah , L. L. P. Lim, and T. H. C. Yeo, “Surface modification and characterization of coconut shell-based activated carbon subjected to acidic and alkaline treatments,” Journal of Applied Science and Process Engineering, vol. 4, no. 2, pp. 186–194, 2017.

V. Patrulea, A. Negrulescu, M. M. Mincea, L. D. Pitulice, O. B. Spiridon, and V. Ostafea, “Optimization of the removal of copper (II) ions from aqueous solution on chitosan and cross-linked chitosan beads,” BioResources, vol. 8, no. 1, pp. 1147–1165, 2013.

N. Tungkananuruk, and K. Tungkananuruk, Principle of chemical water quality analysis. Bangkok: Kasetsart University Press, 2007 (in Thai).

K. Y. Foo and B. H. Hameed, “Insights into the modeling of adsorption isotherm systems,” Chemical Engineering Journal, vol. 156, no. 1, pp. 2–10, 2010.

H. K. Hami, R. F. Abbas, A. S. Mahdi, and A. A. Maryoosh, “An overview of using error function in adsorption isotherm modeling,” Muthanna Journal of Pure Science, vol. 8, no. 1, pp. 22–30, 2021.

B. Boulinguiez, P. Le Cloirec, and D. Wolbert, “Revisiting the determination of langmuir parameters—application to tetrahydrothiophene adsorption onto activated carbon,” Langmuir, vol. 24, no. 13, pp. 6420–6424, 2008.

C. P. Bergmann and F. M. Machado, Carbon Nanomaterials as adsorbents for environmental and biological applications. Switzerland: Springer, 2015.