การตรวจจับการล้มตามลำดับความรุนแรงสำหรับผู้สูงอายุโดยใช้สัญญาณ WiFi
Main Article Content
บทคัดย่อ
อุบัติเหตุการล้มของผู้สูงอายุมักเกิดขึ้นในห้องน้ำหรือห้องนอนซึ่งต้องการความเป็นส่วนตัว ไม่สะดวกต่อการติดตั้งกล้องวงจรปิด เพื่อลดการติดตั้งอุปกรณ์เพิ่มเติมและไม่รุกล้ำความเป็นส่วนตัว บทความนี้ได้ตรวจจับและจำแนกความรุนแรงการล้มของผู้สูงอายุโดยใช้อุปกรณ์ปล่อยสัญญาณวายฟายที่มีอยู่ภายในบ้านทั่วไป ซึ่งพิจารณาจำแนกความรุนแรงของการล้มเป็น 3 ระดับ คือ เล็กน้อย ปานกลาง และรุนแรง โดยเก็บข้อมูล Channel State Information (CSI) เมื่อเกิดเหตุการณ์ลื่นล้มตั้งแต่ก่อนล้มไปจนถึงหลังล้ม 27 เหตุการณ์ จำนวนเหตุการณ์ละ 600 ชุดข้อมูล สถานที่ใช้ทดลองคือห้องสตูดิโอที่ประกอบด้วยห้องนอนพร้อมห้องน้ำ ทดลองภายใต้ 3 สถานการณ์คือ Line-of-Sight (LoS), Non-Line-of-Sight (NLoS) และ NLoS Through the Wall พบว่า มีความแม่นยำอยู่ที่ 98.2%, 97.6% และ98.3% ตามลำดับ โดยใช้เทคนิคการจำแนกแบบ Support Vector Machine (SVM) การพิจารณาการล้มตามลำดับความรุนแรงสามารถนำไปพัฒนาเพื่อติดตั้งระบบแจ้งเตือนและการรักษาที่เหมาะสมหลังเกิดเหตุการณ์ล้มของผู้สูงอายุในอนาคตต่อไป
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ลงตีพิมพ์เป็นข้อคิดเห็นของผู้เขียนเท่านั้น
ผู้เขียนจะต้องเป็นผู้รับผิดชอบต่อผลทางกฎหมายใดๆ ที่อาจเกิดขึ้นจากบทความนั้น
References
L. Z. Rubenstein, “Falls in older people: Epidemiology, risk factors and strategies for prevention,” Age and ageing, vol. 35, no. suppl_2, pp. ii37-ii41, 2006.
N. Djordjevic. (2021, September 5). 36 Eye- Opening Falls in the Elderly Statistics & Facts for 2021. [Online]. Available: https://medalerthelp. org/blog/falls-in-the-elderly-statistics/
X. Wang, J. Ellul, and G. Azzopardi, “Elderly fall detection systems: A literature survey,” Frontiers in Robotics and AI, vol. 7, no. 71, 2020.
N. Khanitta, “Accidental situation and selfcare for prevention of accident among older people,” Journal of Nursing and Health Care, vol. 37, no. 3, pp. 164–172, 2019 (in Thai).
Pressac Communications. (2021, October 5). Wired or wireless sensors? The advantages and disadvantages of wired and wireless systems. [Online]. Available: https://www.pressac.com/ insights/wired-or-wireless-sensors/#
H. Jiang, C. Cai, X. Ma, Y. Yang, and J. Liu, “Smart home based on WiFi sensing: A survey,” IEEE Access, vol. 6, pp. 13317–13325, 2018.
E. J. Oughton, W. Lehr, K. Katsaros, I. Selinis, D. Bubley, and J. Kusuma, “Revisiting wireless internet connectivity: 5G vs Wi-Fi 6,” Telecommunications Policy, vol. 45, no. 5, 2021.
X. Yang, F. Xiong, Y. Shao, and Q. Niu, “WmFall: WiFi-based multistage fall detection with channel state information,” International Journal of Distributed Sensor Networks, vol. 14, no. 10, 2018.
Z. Yang, Z. Zhou, and Y. Liu, “From RSSI to CSI: Indoor localization via channel response,” ACM Computing Surveys (CSUR), vol. 46, no. 2, pp. 1–32, 2013.
Y. Ma, G. Zhou, and S. Wang, “WiFi sensing with channel state information: A survey,” ACM Computing Surveys (CSUR), vol. 52, no. 3, pp. 1–36, 2019.
Y. He, Y. Chen, Y. Hu, and B. Zeng, “WiFi vision: Sensing, recognition, and detection with commodity MIMO-OFDM WiFi,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8296–8317, 2020.
P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-based user location and tracking system,” in Proceedings IEEE INFOCOM 2000. Conference on computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No. 00CH37064), 2000, vol. 2: Ieee, pp. 775–784.
D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool release: Gathering 802.11 n traces with channel state information,” ACM SIGCOMM Computer Communication Review, vol. 41, no. 1, pp. 53–53, 2011.
A. Virmani and M. Shahzad, “Position and orientation agnostic gesture recognition using wifi,” in Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services, 2017, pp. 252–264.
W. Wang, A. X. Liu, M. Shahzad, K. Ling, and S. Lu, “Understanding and modeling of wifi signal based human activity recognition,” in Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, 2015, pp. 65–76.
Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, and H. Liu, “E-eyes: device-free location-oriented activity identification using fine-grained wifi signatures,” in Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, 2014, pp. 617-628.
K. Qian, C. Wu, Z. Zhou, Y. Zheng, Z. Yang, and Y. Liu, “Inferring motion direction using commodity wi-fi for interactive exergames,” in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 2017, pp. 1961–1972.
H. Li, W. Yang, J. Wang, Y. Xu, and L. Huang, “WiFinger: Talk to your smart devices with finger-grained gesture,” in Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2016, pp. 250–261.
G. Wang, Y. Zou, Z. Zhou, K. WU, and L. M. Ni, “We can hear you with WiFi!,” in Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, 2014, pp. 593–604.
H. Abdelnasser, K. A. Harras, and M. Youssef, “UbiBreathe: A ubiquitous non-invasive WiFibased breathing estimator,” in Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing, 2015, pp. 277–286.
O. Kaltiokallio, H. Yiğitler, R. Jäntti, and N. Patwari, “Non-invasive respiration rate monitoring using a single COTS TX-RX pair,” in IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, 2014, pp. 59–69.
H. Wang, D. Zhang, Y. Wang, J. Ma, Y. Wang, and S. Li, “RT-Fall: A real-time and contactless fall detection system with commodity WiFi devices,” IEEE Transactions on Mobile Computing, vol. 16, no. 2, pp. 511–526, 2016.
Y. Wang, K. Wu, and L. M. Ni, “Wifall: Devicefree fall detection by wireless networks,” IEEE Transactions on Mobile Computing, vol. 16, no. 2, pp. 581–594, 2016. +
D. Zhang, H. Wang, Y. Wang, and J. Ma, “Antifall: A non-intrusive and real-time fall detector leveraging CSI from commodity WiFi devices,” in International Conference on Smart Homes and Health Telematics, 2015, pp. 181–193.
S. Palipana, D. Rojas, P. Agrawal, and D. Pesch, “FallDeFi: Ubiquitous fall detection using commodity Wi-Fi devices,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 4, pp. 1–25, 2018.
N. Damodaran, E. Haruni, M. Kokhkharova, and J. Schäfer, “Device free human activity and fall recognition using WiFi channel state information (CSI),” CCF Transactions on Pervasive Computing and Interaction, vol. 2, no. 1, pp. 1–17, 2020.
D. Zhu, N. Pang, G. Li, and S. Liu, “NotiFi: A ubiquitous WiFi-based abnormal activity detection system,” in 2017 International Joint Conference on Neural Networks (IJCNN), 2017, pp. 1766–1773.
A. Lopez. (2020). Shape Detection Of Physical Objects with Intel 5300 and the 802.11 n CSI tool. [Online]. Available: https://lib.dr.iastate. edu/creativecomponents/526
D. M. Etter, D. C. Kuncicky, and D. W. Hull, Introduction to MATLAB. Prentice Hall, 2002.
M. D. Levine, “Feature extraction: A survey,” Proceedings of the IEEE, vol. 57, no. 8, pp. 1391–1407, 1969.
F. Li, M. A. A. Al-Qaness, Y. Zhang, B. Zhao, and X. Luan, “A robust and device-free system for the recognition and classification of elderly activities,” Sensors, vol. 16, no. 12, pp. 2043, 2016.
Y. Hu, F. Zhang, C. Wu, B. Wang, and K. R. Liu, “A wifi-based passive fall detection system,” in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 1723–1727.