วิธีการตรวจวัดการสั่นสะเทือนแบบพลวัตของพื้นผิวถนนยางมะตอยด้วยข้อมูลจากไมโครคอนโทรลเลอร์
Main Article Content
บทคัดย่อ
งานวิจัยนี้นำเสนอวิธีการวัดการสั่นสะเทือนแบบพลวัตโดยไมโครคอนโทรลเลอร์ Arduino UNO R3 Version 1.5.8 และนำข้อมูลดังกล่าวมาวิเคราะห์ความถี่ในการวัดการสั่นสะเทือนของพื้นผิวถนน นอกจากนี้เครื่องมือดังกล่าวยังสามารถวัดการสั่นสะเทือนในย่านความถี่ได้ตั้งแต่ 10–1,000 เฮิรตซ์ และสามารถวัดแรงที่การกระทำต่อพื้นผิวถนน (F) ในขณะที่ยานพาหะกำลังเคลื่อนที่ผ่านระบบตรวจวัด มีค่าตั้งแต่ 1.80x104–7.0x106 นิวตัน ซึ่งสามารถนำอุปกรณ์ดังกล่าวไปประยุกต์ใช้ให้เกิดประโยชน์ เช่น การหาค่าสัมประสิทธิ์ที่มีผลต่อการเปลี่ยนแปลงสภาพของผิวถนน อัตราการเสื่อมสภาพผิวถนน และการออกแบบพื้นผิวถนนที่เหมาะสมกับสภาพจราจรได้ในอนาคต
Article Details
บท
บทความวิจัย ด้านวิศวกรรมศาสตร์
บทความที่ลงตีพิมพ์เป็นข้อคิดเห็นของผู้เขียนเท่านั้น
ผู้เขียนจะต้องเป็นผู้รับผิดชอบต่อผลทางกฎหมายใดๆ ที่อาจเกิดขึ้นจากบทความนั้น
References
[1] S. Horpibulsuk, A. Chinkulkijniwat, W. Kongkitkul, A. Udomchai, S. Chotisakul, and S. Siriphun, “A prototype machine for measuring pavement skid resistance and rutting under various cycles of wheel track,” Technical Education Journal King Mongkut’s University of Technology North Bangkok, vol. 6, no. 1, pp. 187-196, January–June 2015.
[2] H. Higashiyamaa, M. Sanob, F. Nakanishic, O. Takahashid, and S. Tsukumad, “Field measurements of road surface temperature of several asphalt pavements with temperature rise reducing function,” Case Studies in Construction Materials, vol. 4, pp. 73–80, June 2016.
[3] G. Leduc, “Road traffic data: Collection methods and applications,” JRC Technical Notes, European Commission, pp. 1–55, 2008.
[4] H. Sakakibara, M. Aoki, and H. Matsumoto, “Advanced traffic signal control system installed in Phuket City, Kingdom of Thailand,” SEI Technical Review, no. 60, pp. 54–58, 2005.
[5] V. Cevher, R. Chellappaand, and J. H. McClellan, “Vehicle speed estimation using acoustic wave patterns,” IEEE T. Signal Process., vol. 57, no. 1, pp. 30–47, 2009.
[6] F. P. Gonzalez, R. L. Valcarce, and C.Mosquera “Road vehicle speed estimation from a two-microphone array,” in Processing International Conference Acoustics, Speech Signal Processing, 1993.
[5] H. A. Rahim, R. B. Ahmad, A. S. M. Zain, and U. U. Sheikh, “An adapted point based tracking for vehicle speed estimation in linear spacing,” in Processing International Conference Computer and Communication Engineering (ICCCE), 2010.
[6] S. Roussel, H. Porumamilla, C. Birdsong, P. Schuster, and C. Clark, “Enhanced vehicle identification utilizing sensor fusion and statistical algorithms,” in Processing ASME International Mechanical Engineering Congress and Exposition, 2009.
[7] R. Hostettler, W. Birk, and M. L. Nordenvaad, “Feasibility of road vibration-based vehicle property,” IET Intelligent Transport Systems, vol. 4, no. 4, pp. 356–364, 2010.
[8] S. Jian and J. Ruichen, “Generation of virtual road surfaces and simulation of nonlinear vibration of vehicles,” in Proceedings of the IEEE International Vehicle Electronics Conference, 1999.
[9] R. Martin, “Noise power spectral density estimation based on optimal smoothing and minimum statistics,” IEEE Transactions on Speech and Audio Processing, vol. 9, no. 5, pp. 504–512, 2001.
[10] E. I. Laftchiev, C.M. Lagoa, and S. N. Brennan, “Vehicle localization using in-vehicle pitch data and dynamical models,” Intelligent Transportation Systems, IEEE Transactions on, vol. 16, no. 1, pp. 206–220, 2015.
[11] F. Jiménez, “Improvements in road geometry measurement using inertial measurement systems in datalog vehicles,” Measurement, vol. 44, no. 1, pp. 102–112, 2011.
[12] Elecrow Policy, Vibration Sensor SW-420 [Online]. Available: https://www.elecrow.com/vibration-sensor-module-sw420-p-525.html
[13] S. Maliphan, N. Pornsuwancharoen, and S. Thongmee, “A method of vibration measurement dynamics of motorcycle by microcontroller,” in Proceedings The 8th International Science, Social Science, Engineering and Energy Conference viii, 2017, pp. 253–258.
[14] T. J. Gordon Zevi Bareket, “Vibration transmission from road surface features: Vehicle measurement and detection,” Technical Report for Nissan Technical Center North America, Inc., The University of Michigan Transportation Research Institute (UMTRI) , UMTRI-2007-4 (99796), January 2007.
[15] M. Gobbi and G. Mastinu, “Analytical description and optimization of the dynamic behavior of passively suspended road vehicles,” Journal of Sound and vibration, vol. 254, no. 3, pp. 457–481, 2001.
[2] H. Higashiyamaa, M. Sanob, F. Nakanishic, O. Takahashid, and S. Tsukumad, “Field measurements of road surface temperature of several asphalt pavements with temperature rise reducing function,” Case Studies in Construction Materials, vol. 4, pp. 73–80, June 2016.
[3] G. Leduc, “Road traffic data: Collection methods and applications,” JRC Technical Notes, European Commission, pp. 1–55, 2008.
[4] H. Sakakibara, M. Aoki, and H. Matsumoto, “Advanced traffic signal control system installed in Phuket City, Kingdom of Thailand,” SEI Technical Review, no. 60, pp. 54–58, 2005.
[5] V. Cevher, R. Chellappaand, and J. H. McClellan, “Vehicle speed estimation using acoustic wave patterns,” IEEE T. Signal Process., vol. 57, no. 1, pp. 30–47, 2009.
[6] F. P. Gonzalez, R. L. Valcarce, and C.Mosquera “Road vehicle speed estimation from a two-microphone array,” in Processing International Conference Acoustics, Speech Signal Processing, 1993.
[5] H. A. Rahim, R. B. Ahmad, A. S. M. Zain, and U. U. Sheikh, “An adapted point based tracking for vehicle speed estimation in linear spacing,” in Processing International Conference Computer and Communication Engineering (ICCCE), 2010.
[6] S. Roussel, H. Porumamilla, C. Birdsong, P. Schuster, and C. Clark, “Enhanced vehicle identification utilizing sensor fusion and statistical algorithms,” in Processing ASME International Mechanical Engineering Congress and Exposition, 2009.
[7] R. Hostettler, W. Birk, and M. L. Nordenvaad, “Feasibility of road vibration-based vehicle property,” IET Intelligent Transport Systems, vol. 4, no. 4, pp. 356–364, 2010.
[8] S. Jian and J. Ruichen, “Generation of virtual road surfaces and simulation of nonlinear vibration of vehicles,” in Proceedings of the IEEE International Vehicle Electronics Conference, 1999.
[9] R. Martin, “Noise power spectral density estimation based on optimal smoothing and minimum statistics,” IEEE Transactions on Speech and Audio Processing, vol. 9, no. 5, pp. 504–512, 2001.
[10] E. I. Laftchiev, C.M. Lagoa, and S. N. Brennan, “Vehicle localization using in-vehicle pitch data and dynamical models,” Intelligent Transportation Systems, IEEE Transactions on, vol. 16, no. 1, pp. 206–220, 2015.
[11] F. Jiménez, “Improvements in road geometry measurement using inertial measurement systems in datalog vehicles,” Measurement, vol. 44, no. 1, pp. 102–112, 2011.
[12] Elecrow Policy, Vibration Sensor SW-420 [Online]. Available: https://www.elecrow.com/vibration-sensor-module-sw420-p-525.html
[13] S. Maliphan, N. Pornsuwancharoen, and S. Thongmee, “A method of vibration measurement dynamics of motorcycle by microcontroller,” in Proceedings The 8th International Science, Social Science, Engineering and Energy Conference viii, 2017, pp. 253–258.
[14] T. J. Gordon Zevi Bareket, “Vibration transmission from road surface features: Vehicle measurement and detection,” Technical Report for Nissan Technical Center North America, Inc., The University of Michigan Transportation Research Institute (UMTRI) , UMTRI-2007-4 (99796), January 2007.
[15] M. Gobbi and G. Mastinu, “Analytical description and optimization of the dynamic behavior of passively suspended road vehicles,” Journal of Sound and vibration, vol. 254, no. 3, pp. 457–481, 2001.