การแต่งแร่ด้วยจุลชีวัน

Main Article Content

Siwarote Siriluck

บทคัดย่อ

จุลชีวันถูกนำมาใช้ในงานแต่งแร่ คุณสมบัติที่เป็นประโยชน์คือ มีชีวิต ไม่ใช้ไฟฟ้า ประหยัด เพาะพันธุ์ได้ สามารถดำรงชีวิตในสภาพเป็นกรดสูง สภาพเปียกชื้น ทนต่อสภาวะพิษของกรดกำมะถัน ในบทความนี้นำเสนอการใช้จุลชีวันแต่งแร่ยูเรเนียมในอินเดีย แพลทินัมและพาลาเดียมในบราซิล ทองคำในออสเตรเลีย ทองแดงในอเมริกา สังกะสีและตะกั่วในปากีสถาน และ โลหะมีค่าจากอุปกรณ์อิเล็กทรอนิกส์ในขนาดห้องปฏิบัติการ เพื่อเป็นแนวทางในการแก้ปัญหาของสารพิษจากเหมืองแร่ การแต่งแร่ด้วยจุลชีวันมีข้อดีคือ ราคาถูก การจัดการน้อย ค่าดำเนินการต่ำ การบำรุงรักษาต่ำอนุรักษ์ทรัพยากรแร่จากบ่อทิ้งแร่ ทำงานได้ตลอดเวลา 24 ชั่วโมง สามารถประยุกต์เข้ากับการจัดการสิ่งแวดล้อมในเหมืองได้ ส่วนข้อเสียคือ คืนทุนช้า กระบวนการใช้เวลานาน ไม่สามารถหยุดกระบวนการได้ทันที มีความเสี่ยงในการรั่วไหลลงชั้นน้ำใต้ดินแหล่งน้ำสาธารณะ มีบางชนิดที่เป็นอันตรายต่อคนและสัตว์

Article Details

บท
Academic Article

References

[1] W. Sand, T. Gehrke, P. G. Jozsa, and A. Schippers, “(Bio) chemistry of bacterial leaching—direct vs. indirect bioleaching,” Hydrometallurgy, vol. 59, no. 2, pp.159–175, 2001.

[2] J. Niosi and S. E. Reid, “Biotechnology and Nanotechnology: Science-based enabling technologies as windows of opportunity for LDCs?,” World Development, vol. 35, no. 3, pp. 426–438, 2007.

[3] D. S. Holmes, “Review of International Biohydrometallurgy Symposium, Frankfurt, 2007,” Hydrometallurgy, vol. 92, no. 1–2, pp. 69–72, 2008.

[4] A. Schippers, A. Breuker, A. Blazejak, K. Bosecker, D. Kock, and T. Wright, “The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria,” Hydrometallurgy, vol. 104, no. 3–4, pp. 342–350, 2010.

[5] A. Cecal, I. Palamaru, D. Humelnicu, K. Popa, V. V. Salaru, V. Rudic, and A. Gulea, “Removal of uranyl ions from residual waters using some algae types,” Czechoslovak Journal of Physics, vol. 49, no. S1, pp. 987–990, 1999.

[6] Y.-G. Liu, M. Zhou, G.-M. Zeng, X. Wang, X. Li, T. Fan, and W.-H. Xu, “Bioleaching of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria: Effects of substrate concentration,” Bioresource Technology, vol. 99, no. 10, pp. 4124–4129, 2008.

[7] T. Rohwerder, T. Gehrke, K. Kinzler, and W. Sand, “Bioleaching review part A” Applied Microbiology and Biotechnology, vol. 63, no. 3, pp. 239–248, January, 2003.

[8] V. Torsvik, J. Goksøyr, and F. L.Daae, “High diversity in DNA of soil bacteria,” Applied and Environmental Microbiology, vol. 56, no. 3, pp. 782–787, 1990.

[9] C. M. Davies and L. M. Evison, “Sunlight and the survival of enteric bacteria in natural waters,” Journal of Applied Bacteriology, vol. 70, no. 3, pp. 265–274, 1991.

[10] K. Kawahara, K. Tsuruda, M. Morishita, and M. Uchida, “Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions,” Dental Materials, vol. 16, no. 6, pp. 452–455, 2000.

[11] V. Ottova, J. Balcarova, and J. Vymazal, “Microbial characteristics of constructed wetlands,” Water Science and Technology, vol. 35, no. 5, pp. 117–123, 1997.

[12] S. M. Z. Hossain, C. Ozimok, C. Sicard, S. D. Aguirre, M. M. Ali, Y. Li, and J. D. Brennan, “Multiplexed paper test strip for quantitative bacterial detection,” Analytical and Bioanalytical Chemistry, vol. 403, no. 6, pp. 1567–1576, 2012.

[13] T. D. Brock, K. M. Brock, R. T. Belly, and R. L. Weiss, “Sulfolobus: A new genus of sulfuroxidizing bacteria living at low pH and high temperature,” Archiv für Mikrobiologie, vol. 84, no. 1, pp. 54–68, 1972.

[14] Department of Primary Industries and Mines. (2017, May 8). Summary report on implementation of the solution in lead metal problem at from Kliti, Kanchanaburi [Online], Available: www.dpim.go.th/service/download?articleid=6031

[15] The secretariat of the cabinet, Thailand. (2016, May 12). Report of investigation on the health and environmental issues of Akara resources public company limited [Online], Available: https://f.ptcdn.info/907/042/000/o7mb31ogxpB3XcFITE8-o.jpg

[16] P. C. Kapur and S. P. Mehrotra, Mineral processing: recent advances and future trends; proceedings of a conference honouring P. C. Kapur on his 60th birthday, Indian Institute of Technology, Kanpur, December 11–15, 1995. New Delhi: Allied, pp.489–502, 1995.

[17] S. C. B. Bellenberg, R. Barthen, M. Boretska, R. Zhang, W. Sand, and M. Vera, “Manipulation of pyrite colonization and leaching by iron-oxidizing Acidithiobacillus species,” Applied Microbiology and Biotechnology, vol. 99, no. 3, pp. 1435–1449, September, 2014.

[18] J.-L. Xia, A.-A. Peng, H. He, Y. Yang, X.-D. Liu, and G.-Z. Qiu, “A new strain Acidithiobacillus albertensis BY-05 for bioleaching of metal sulfides ores,” Transactions of Nonferrous Metals Society of China, vol. 17, no. 1, pp. 168–175, 2007.

[19] L. Chen, Y. Ren, J. Lin, X. Liu, X. Pang, and J. Lin, “Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur Oxygenase reductase defective mutant,” PLoS ONE, vol. 7, no. 9, December, 2012.

[20] S. Hedrich and D. B. Johnson, “Acidithiobacillus ferridurans sp. nov., an acidophilic iron-, sulfurand hydrogen-metabolizing chemolithotrophic gammaproteobacterium,” International Journal Of Systematic And Evolutionary Microbiology, vol. 63, no. Pt 11, pp. 4018–4025, 2013.

[21] C. Falagán and D. B. Johnson, “Acidithiobacillus ferriphilus sp. nov., a facultatively anaerobic ironand sulfur-metabolizing extreme acidophile,” International Journal of Systematic and Evolutionary Microbiology, vol. 66, no. 1, pp. 206–211, January, 2016.

[22] S. Pal, D. Pradhan, T. Das, L. B. Sukla, and G. R. Chaudhury, “Bioleaching of low-grade uranium ore using Acidithiobacillus ferrooxidans,” Indian Journal of Microbiology, vol. 50, no. 1, pp. 70–75, 2010.

[23] J. Brierley and C. Brierley, “Present and future commercial applications of biohydrometallurgy,” Biohydrometallurgy and the Environment Toward the Mining of the 21st Century - Proceedings of the International Biohydrometallurgy Symposium Process Metallurgy, pp. 81–89, 1999.

[24] Society for Microbiology (SASM). (2016, December). Acidithiobacillus_ferrooxidans. Society for Microbiology (SASM) [Online]. Available: http://www.sasm.org.za/images/blog/Acidithiobacillus_ferrooxidans.jpg

[25] Wikipedia. (2016, December). Uranium dioxide. Wikipedia [Online]. Available: https://en.wikipedia.org/wiki/Uranium_dioxide

[26] D. E. Rawlings, “Microbially-assisted dissolution of minerals and its use in the mining industry,” Pure and Applied Chemistry, vol. 76, no. 4, January 2004.

[27] F. Reith, C. M. Zammit, S. S. Shar, B. Etschmann, R. Bottrill, G. Southam, C. Ta, M. Kilburn, T. Oberthür, A. S. Ball, and J. Brugger, “Biological role in the transformation of platinum-group mineral grains,” Nature Geoscience, vol. 9, no. 4, pp. 294–298, 2016.

[28] M. Rehman, M. A. Anwar, M. Iqbal, K. Akhtar, A. M. Khalid, and M. A. Ghauri, “Bioleaching of high grade Pb–Zn ore by mesophilic and moderately thermophilic iron and sulphur oxidizers,” Hydrometallurgy, vol. 97, no. 1–2, pp. 1–7, 2009.

[29] V. Moses and R. E. Cape, Biotechnology, the science and the business. Chur, Switzerland: Harwood Academic Publishers, pp. 631, 1999.

[30] J. E. Madrigal-Arias, R. Argumedo-Delira, A. Alarcón, M. R. Mendoza-López, O. García-Barradas, J. S. Cruz-Sánchez, R. Ferrera-Cerrato, and M. Jiménez-Fernández, “Bioleaching of gold, copper and nickel from waste cellular phone PCBs and computer goldfinger motherboards by two Aspergillus nigerstrains,” Brazilian Journal of Microbiology, vol. 46, no. 3, pp. 707–713, 2015.

[31] R. Nareshkumar, R. Nagendran, and K. Parvathi, “Bioleaching of heavy metals from contaminated soil using Acidithiobacillus thiooxidans: effect of sulfur/soil ratio,” World Journal of Microbiology and Biotechnology, vol. 24, no. 8, pp. 1539–1546, 2007.

[32] D. Mishra, D.-J. Kim, D. Ralph, J.-G. Ahn, and Y.-H. Rhee, “Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans,” Waste Management, vol. 28, no. 2, pp. 333–338, 2008.

[33] E. Schuster, N. Dunn-Coleman, J. Frisvad, and P. van Dijck, “On the safety of aspergillus niger - A review,” Applied Microbiology and Biotechnology, vol. 59, no. 4–5, pp. 426–435, January 2002.

[34] V. Boonamnuayvitaya. (1999, September 22). A development of biochemical application method for treating arsenic contaminated water resource in ronpibul, Nakhon Si Thammarat [Online]. Available: https://www.kmutt.ac.th/rippc/pron214.html