• Anuwat Sangon Faculty of Science and Technology, Nakhon Sawan Rajabhat University, Nakhon Sawan 60130


air pollution, mortality, COVID-19, nitrogen dioxide


The purpose of this research is to investigate the relationship of air pollution and the number of deaths in each Thai province affected by COVID-19. To accomplish so, COVID-19 specific mortality has been normalized for each Thai province 37 provinces and every age group (8 groups) spanning from 0 to 9 years to >70 years, using national population numbers from 2020. A correlation and a linear regression model were used to investigate the association between air pollution and COVID-19 mortality in Thai provinces. As a result, the SMR (Standardized Mortality Ratio) in some provinces is substantially higher than expected and the presence of NO2 was found to be independently linked with case status. In conclusion, this study appears to uncover evidence that supports the presence of a link between air pollution and the risk of disease-related death, which refers to nitrogen dioxide (NO2).


Download data is not yet available.


กรมควบคุมมลพิษ. (2564). รายงานสถานการณ์และคุณภาพอากาศประเทศไทย. สืบค้นเมื่อ 17 พฤศจิกายน 2564. จาก

กรมควบคุมโรค. (2564). สถานการณ์ผู้ติดเชื้อ COVID-19 รายพื้นที่ กระทรวงสาธารณสุข. สืบค้นเมื่อ 24 กันยายน 2564. จาก

สำนักงานสถิติแห่งชาติ. (2564). จำนวนประชากรจากการทะเบียน จำแนกตามกลุ่มอายุ รายจังหวัด และภาค พ.ศ. 2554 – 2563. สืบค้นเมื่อ 19 สิงหาคม 2564. จาก

สำนักงานองค์การอนามัยโลกประจำประเทศไทย. (2564). รายงานสถานการณ์โดยองค์การอนามัยโลกประจำประเทศไทยฉบับที่ 202 COVID-19. สืบค้นเมื่อ 25 ตุลาคม 2564. จาก

สุรัยยา หมานมานะ, โสภณ เอี่ยมศิริถาวร, และสุมนมาลย์ อุทยมกุล, (2563). โรคติดเชื้อไวรัสโคโรนา 2019 (COVID-19). วารสารสถาบันบำราศนราดูร, 14(2), 124-133.

Ali, N., Fariha, K.A., Islam, F., Mishu, M.A., Mohanto,N.C., Hosen, M.J., & Hossain, K. (2021). Exposure to air pollution and COVID-19 severity: A review of current insights, management, and challenges. Integrated Environmental Assessment and management, 17(6), 1114-1122.

Alifano, M., Alifano, P., Forgez, P., & Iannelli, A. (2020). Renin-angiotensin system at the heart of COVID-19 pandemic. Biochimie, 174, 30-33.

Azarudeen, M.J., Aroskar, K., Kurup, K.K., Dikid, T., Chauhan, H., Jain, S.K., & Singh, S.K. (2021). Comparing COVID-19 mortality across selected states in India: The role of age structure. Clinical Epidemiology and Global Health, 12, 100877.

ChooChuay, C., Pongpiachan, S., Tipmanee, D., Suttinun, O., Deelaman, W., Wang, Q., Xing, L. Li, G., Han, Y., Palakun, J., & Cao, J. (2020). Impacts of PM2.5 sources on variations in particulate chemical compounds in ambient air of Bangkok, Thailand. Atmospheric Pollution Research, 11(9), 1657-1667.

Copat, C., Cristaldi, A., Fiore, M., Grasso, A., Zuccarello, P., Signorelli, S.S., Conti, G.O., & Ferrante, M. (2020). The role of air pollution (PM and NO2) in COVID-19 spread and lethality: A systematic review. Environmental Research, 191, 110129.

Dettori, M., Deiana, G., Balletto, G., Borruso, G., Murgante, B., Arghittu, A., Azara, A., & Castiglia, P. (2021). Air pollutants and risk of death due to COVID-19 in Italy. Environmental Research, 192, 110459.

Di Ciaula, A., Bonfrate, L., Portincasa, P., IMC-19 Group, Appice, C., Belfiore, A., Binetti, M., Cafagna, G., Campanale, G., Carrieri, A., Cascella, G., Cataldi, S., Cezza, A., Ciannarella, M., Cicala, L., D'Alitto, F., Dell'Acqua, A., Dell'Anna, L., Diaferia, M., Erroi, G., Fiermonte, F., Galerati, I., Giove, M., Grimaldi, L., Mallardi, C., Mastrandrea, E., Mazelli, G.D., Mersini, G., Messina, G., Messina, M., Montesano, A., Noto, A., Novielli, M.E., Noviello, M., Palma, M.V., Palmieri, V.O., Passerini, F., Perez, F., Piro, C., Prigigallo, F., Pugliese, S., Rossi, O., Stasi, C., Stranieri, R., & Vitariello, G. (2022). Nitrogen dioxide pollution increases vulnerability to COVID-19 through altered immune function. Environmental Science and Pollution Research,

Frontera, A., Cianfanelli, L., Vlachos, K., Landoni, G., & Cremona, G. (2020). Severe air pollution links to higher mortality in COVID-19 patients: The “double-hit” hypothesis. Journal of Infection, 81, 255-259.

Jiang, Y., Wu, X., & Guan, Y. (2020). Effect of ambient air pollutants and meteorological variables on COVID-19 incidence. Infection Control & Hospital Epidemiology, 41, 1011-1015.

John Hopskin University, & Medicine. (2021). Mortality analyses: Cases and mortality by country. Retrieved October 25, 2021, from

Khamkaew, C., Chantara, S., Janta, R., Pani, S.K., Prapamontol, T., Kawichai, S., Wiriya, W., & Lin, N.H. (2016). Investigation of biomass burning chemical components over Northern Southeast Asia during 7-SEAS/BASELInE 2014 campaign. Aerosol and Air Quality Research, 16, 2655-2670.

Li, H., Xu, X., Dai, D., Huang, Z., Ma, Z., & Guan, Y. (2020). Air pollution and temperature are associated with increased COVID-19 incidence: a time series study. International Journal of Infectious Disease, 97, 278-282.

Mendy, A., Wu, X., Keller, J.L., Fassler, C.S., Apewokin, S., Mersha, T.B., Xie, C., & Pinney, S.M. (2021). Air pollution and the pandemic: long-term PM2.5 exposure and disease severity in COVID-19 patients. Respirology, 26, 1181– 1187.

Nouvellet, P., Bhatia, S., Cori, A., Ainslie, K.E.C., Baguelin, M., Bhatt, S., Boonyasiri, A., Brazeau, N.F., Cattarino, L., Cooper, L.V., Coupland, H., Cucunuba, Z.M., Cuomo-Dannenburg, G., Dighe, A., Djaafara, B.A., Dorigatti, I., Eales, O.D., van Elsland, S.L., Nascimento, F.F., FitzJohn, R.G., Gaythorpe, K.A.M., Geidelberg, L., Green, W.D., Hamlet, A., Hauck, K., Hinsley, W., Imai, N., Jeffrey, B., Knock, E., Laydon, D.J., Lees, J.A., Mangal, T., Mellan, T.A., Nedjati-Gilani, G., Parag, K.V., Pons-Salort, M., Ragonnet-Cronin, M., Riley, S., Unwin, H.J.T., Verity, R., Vollmer, M.A.C., Volz, E., Walker, P.G.T., Walters, C.E., Wang, H., Watson, O.J., Whittaker, C., Whittles, L.K., Xi, X., Ferguson, N.M., & Donnelly, C.A. (2021). Reduction in mobility and COVID-19 transmission. Natural Communication. 12, 1090.

Office of the Federal Register. (2022). CFR Part 50 National Primary and Secondary Ambient Air Quality Standards. Retrieved February 10, 2022, from

Ogen, Y. (2020). Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Science of the Total Environment, 726, 138605.

Paital, B., & Agrawal, P.K. (2021). Air pollution by NO2 and PM2.5 explains COVID-19 infection severity by overexpression of angiotensin-converting enzyme 2 in respiratory cells: a review. Environmental Chemistry Letters, 19, 25-42.

Stockholm Environment Institute. (2021). Air quality in Thailand: Understanding the regulatory. Retrieved February 10, 2022, from

Vandenbroucke, J.P. (1982). A shortcut method for calculating the 95 per cent confidence interval of the standardized mortality ratio. American Journal of Epidemiology, 115(2), 303-304.

Veronesi, G., De Matteis, S., Calori, G., Pepe, N., & Ferrario, M.M. (2022). Long-term exposure to air pollution and COVID-19 incidence: a prospective study of residents in the city of Varese, Northern Italy. Occupational and Environmental Medicine, 0, 1-8.

World Health Organization. (‎2021)‎. WHO global air quality guidelines: particulate matter (‎PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide: executive summary. Retrieved November 21, 2021, from

Wu, X., Nethery, R.C., Sabath, B.M., Braun, D., & Dominici, F. (2020). Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. Science Advance, 6, eabd4049.

Zhu, Y., Xie, J., Huang, F., & Cao, L. (2020). Association between short-term exposure to air pollution and COVID-19 infection: evidence from China. Science of the Total Environment, 727, 138704.



How to Cite

Sangon อ. . . (2022). AIR POLLUTION AND MORTALITY FROM COVID-19 IN THAILAND . PSRU Journal of Science and Technology, 7(1), 55–70. Retrieved from



Research Articles