• Jirarut Joonhuay Department of Physics, Faculty of Science, Naresuan University
  • Jinda Phowen
  • Watcharakorn Srikom
  • Attapon Amthong Department of Physics, Faculty of Science, Naresuan University
Keywords: Right triangular quantum dot, Oscillator strength, Light absorption coefficient


In this research, we study the electronic structure and optical properties of the right triangular quantum dot. Using effective mass approximation, we solve the schrӧdinger equation to obtain analytic solutions of the eigenenergies as well as eigenfunctions and use them to calculate the oscillator strength and absorption coefficients. We found that the probability densities of the transition due to x-polarized and y-polarized light have the same distribution pattern. After considering linear and nonlinear absorption coefficients, it is found that the resonant peaks show redshift phenomenon when the system size increases. The absorption from the ground state to the first excited state is dominant when the system size is less than 20 nm. While that from the ground state to the second excited state is dominant when the system size is greater than 20 nm. This is because of increasing magnitude of the nonlinear term. The optical properties we find will bring benefits to designing novel optoelectronic devices.


Download data is not yet available.


Duque, C.A., Mora-Ramos, M.E., Kasapoglu, E.S.İ.N., Ungan, F.A.T.İ.H., Yesilgul, U., Sakiroglu, S., ...& Sökmen, I. (2013). Impurity-related linear and nonlinear optical response in quantum-well wires with triangular cross section. Journal of luminescence, 143, 304-313.

Fu, L., Lever, P., Sears, K., Tan, H.H., & Jagadish, C. (2005). In/sub 0.5/Ga/sub 0.5/As/GaAs quantum dotinfrared photodetectors grown by metal-organic chemical vapor deposition. IEEE electron device letters, 26(9), 628-630.

Huffaker, D.L., Park, G., Zou, Z., Shchekin, O.B., & Deppe, D.G. (1998). 1.3 room-temperature GaAs-based quantum-dot laser. Applied Physics Letters, 73(18), 2564-2566.

Jo, M., Mano, T., Abbarchi, M., Kuroda, T., Sakuma, Y., & Sakoda, K. (2012). Self-limiting growth of hexagonal and triangular quantum dots on (111) A. Crystal growth & design, 12(3), 1411-1415.

Liboff, R.L. (2003). Introductory quantum mechanics. India: Pearson Education India.

Liu, H., Wang, T., Jiang, Q., Hogg, R., Tutu, F., Pozzi, F., & Seeds, A. (2011). Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nature Photonics, 5(7), 416-419.

Li, W.K. (1984). A particle in an isoceles right triangle. Journal of Chemical Education, 61(12), 1034.

Mirin, R.P., Ibbetson, J.P., Nishi, K., Gossard, A.C., & Bowers, J.E. (1995). 1.3 photoluminescence from InGaAs quantum dots on GaAs. Applied physics letters, 67(25), 3795-3797.

Osorio, J.A., Caicedo-Paredes, D., Vinasco, J.A., Morales, A.L., Radu, A., Restrepo, R.L., ... & Duque, C.A. (2020). Pyramidal core-shell quantum dot under applied electric and magnetic fields. Scientific Reports, 10(1), 1-14.

Pramjorn, N., & Amthong, A. (2020). Donor binding energies in a curved two-dimensional electron system. Applied Surface Science, 508, 145195.

Reilly, C.E., Nakamura, S., DenBaars, S.P., & Keller, S. (2020). MOCVD growth and characterization of

InN quantum dots. Physica status solidi (b), 257(4), 1900508.

Sautter, K.E., Vallejo, K.D., & Simmonds, P.J. (2020). Strain-driven quantum dot self-assembly by molecular beam epitaxy. Journal of Applied Physics, 128(3), 031101.

Schuck, C.F., Vallejo, K.D., Garrett, T., Yuan, Q., Wang, Y., Liang, B., & Simmonds, P. J. (2020). Impact of arsenic species on self-assembly of triangular and hexagonal tensile-strained GaAs (111) A quantum dots. Semiconductor Science and Technology, 35(10), 105001.

Sellin, R.L., Ribbat, C., Grundmann, M., Ledentsov, N.N., & Bimberg, D. (2001). Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers. Applied Physics Letters, 78(9), 1207-1209.

Tiutiunnyk, A., Tulupenko, V., Mora-Ramos, M.E., Kasapoglu, E.S.İ.N., Ungan, F.A.T.İ.H., Sari, H.Ü.S.E.Y.İ.N., ...

& Duque, C.A. (2014). Electron-related optical responses in triangular quantum dots. PhysicaE:Low-dimensional Systems and Nanostructures, 60, 127-132.

Wu, S., Wang, L., Li, H., & Zeng, X. (2014). Tuning of the intersubband absorption in a shallow InAs/InP quantum wire by a transverse electric field. Superlattices and Microstructures, 67, 33-39.

Yusa, G., & Sakaki, H. (1997). Trapping of photogenerated carriers by InAs quantum dots and persistent photoconductivity in novel GaAs/n-AlGaAs field-effect transistor structures. Applied physics letters, 70(3), 345-347.

How to Cite
Joonhuay, J., Phowen, J., Srikom, W., & Amthong, A. (2021). THE ABSORPTION COEFFICIENTS IN A RIGHT TRIANGULAR QUANTUM DOT. PSRU Journal of Science and Technology, 6(2), 36-51. Retrieved from
Research Articles