EFFICIENCY ENHANCEMENT OF WIRELESS POWER TRANSFER SYSTEM WITH METAMATERIALS

Authors

  • Chaiyong Soemphol Mahasarakham University
  • Niwat Angkawisittpan

Keywords:

Efficiency improvement, Wireless power transfer, Metamaterials

Abstract

The wireless power transfer system is considered to be a new technology in the future that will help facilitate for human daily life. This paper presents a study on the applications of metamaterials for enhancing the efficiency of wireless power transfer systems. The basic principles of wireless power transfer system, metamaterials and its applications for wireless power transfer system are proposed. The results of the literature review show that metamaterials can be used to significantly increase the efficiency of the wireless power transfer systems.

References

นิวัตร์ อังควิศิษฐพันธ์. (2010). อภิวัสดุ. วารสารวิชาการ วิศวกรรมศาสตร์ ม.อบ., 3(2), 52-60.

วัชระ อมศิริ และวันชัย ไพจิตโรจนา. (2019). อภิวัสดุสำหรับเพิ่มประสิทธิภาพการส่งพลังงานไฟฟ้าไร้สาย. วารสารวิทยาศาสตร์และเทคโนโลยี, 27(2), 360 – 379.

ศราวุธ ชัยมูล. (2015). ข้อพิจารณาในการออกแบบระบบส่งพลังงานไฟฟ้าไร้สายสมัยใหม่: อินดักทีฟคัปปลิ้งและเรโซแนนซ์แม่เหล็ก. ใน การประชุมวิชาการงานวิจัยและพัฒนาเชิงประยุกต์ ครั้งที่ 7. (น.426–430). ตรัง: มหาวิทยาลัยเทคโนโลยีราชมงคลศรีวิชัย วิทยาเขตตรัง และสมาคมวิชาการไฟฟ้า อิเลคทรอนิคส์ โทรคมนาคม และสารสนเทศ ประเทศไทย.

ศราวุธ ชัยมูล และประยุทธ อัครเอกฒาลิน. (2011). อภิวัสดุสำหรับประยุกต์ใช้ด้านสายอากาศ. วารสารวิชาการพระจอมเกล้าพระนครเหนือ, 21(2), 472-482.

Chen, J.-F., Ding, Z., Hu, Z., Wang, S., Cheng, Y., Liu, M., Wei, B., & Wang, S. (2017). Metamaterial-Based High-Efficiency Wireless Power Transfer System at 13.56 MHz for Low Power Applications. Progress In Electromagnetics Research B, 72, 17-30.

Cho, Y., Lee, S., Jeong, S., Kim, H., Song, C., Yoon, K., Song, J., Kong, S., Yun, Y. & Kim, J. (2016). Hybrid Metamaterial with Zero and Negative Permeability to Enhance Efficiency in Wireless Power Transfer System. Proceeding of 2016 IEEE Wireless Power Transfer Conference (WPTC) (pp. 1-3). Portugal: Aveiro.

Cho, Y., Kim, J.J., Kim, D. Lee, S., Kim, H., Song, C., Kong, S. Kim, H., Seo, C., Ahn, S. & Kim, J. (2016). Thin PCB-type Metamaterials for Improved Efficiency and Reduced EMF Leakage in Wireless Power Transfer Systems,” IEEE Transactions on Microwave Theory and Techniques, 64(2), 353–364.

Cho, Y., .Lee, S., Kim, D.H., Kim, H., Song, C., Kong, S., Park, J., Seo, C. & Kim, J. (2018). Thin Hybrid Metamaterial Slab With Negative and Zero Permeability for High Efficiency and Low Electromagnetic Field in Wireless Power Transfer Systems. IEEE Transactions on Electromagnetic Compatibility, 60(4), 1001-1009.

Feng, J., Li, Q., & Lee, F.C. (2018). Coil and Circuit Design of Omnidirectional Wireless Power Transfer System for Portable Device Application. Proceeding of 2018 IEEE Energy Conversion Congress and Exposition (ECCE) (pp.914-920). Portland: OR.

Hecht, J. (2014). SUPER-RESOLUTION MICROSCOPY: New twists on superlenses improve subwavelength microscopy. Retrieved June, 24, 2020, from https://www.bioopticsworld.com/bioimaging/article/16429609

Huang, D., Urzhumov, Y., Smith, D.R., Teo, K.H. & Zhang, J. (2012). Magnetic Superlens-enhanced Inductive Coupling for Wireless Power Transfer. Journal of Applied Physics, 111, 64902.

Islam, A., Islam S., & Tulip, F. (2013). Design and Optimization of Printed Circuit Board Inductors for Wireless Power Transfer System," Circuits and Systems, 4(2), 237-244.

Kara N. B., Marlin H.M., Ervin S. (2017). Multi-Disciplinary Challenges in Tissue Modeling for Wireless Electromagnetic Powering: A Review. IEEE Sensors Journal, 17(20), 6498-6509.

Kim, H., & Seo, C. (2014). Highly Efficient Wireless Power Transfer Using Metamaterial Slab with Zero Refractive Property. Electronics Letters, 50(16), 1158-1160.

Lee, S., Cho, Y., Jeong, S., Hong, S., Sim, B., Kim, H. & Kim, J. (2019). High Efficiency Wireless Power Transfer System using a Two-stack Hybrid Metamaterial Slab. Proceeding of 2019 IEEE Wireless Power Transfer Conference (WPTC) (pp.616-619). London: United Kingdom.

Lipworth, G., Ensworth, J., Seetharam, K., Huang, D., Lee, J.S., Schmalenberg, P., Nomura, T., Reynolds, M.S., Smith, D.R., & Urzhumov, Y. (2014). Magnetic metamaterial superlens for increased range wireless power transfer. Science Reports, 4, 3642.

Lu, X., Wang, P., Niyato, D., Kim, D.I. & Han, Z. (2016). Wireless Charging Technologies: Fundamentals, Standards, and Network Applications. IEEE Communications Surveys & Tutorials, 18(2), 1413-1452.

Mao, S., Wang, H., Mao, Z.-H. & Sun, M. (2018). A polygonal double-layer coil design for high-efficiency wireless power transfer. AIP Advances, 8(5), 056631.

Park, J., Park, B., Ryu, Y., Park, E. & Lee, J. (2014) .Modified mu-zero Resonator for Efficient Wireless Power Transfer. IET Microwaves, Antennas & Propagation, 8(12), 912-920.

Park, C., Lee, S., Cho, G.H. & Rim, C.T. (2015). Innovative 5-m-offdistance Inductive Power Transfer Systems with Optimally Shaped Dipole Coils. IEEE Transaction of Power Electronics, 30(2), 817–827.

Pendry, J.B. (2000). Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85(18), 3966-3969.

Rajagopalan, A., RamRakhyani, A.K., Schurig, D., Lazzi, G. (2014). Improving Power Transfer Efficiency of

a Short-range Telemetry System using Compact Metamaterials. IEEE Transaction of Microwave Theory Technology, 62, 947–955.

Ranaweera, A.L.A.K., Moscoso, C.A., Lee & J.-W. (2015). Anisotropic Metamaterial for Efficiency Enhancement of mid-range Wireless Power Transfer under Coil Misalignment. Journal of Physics D: Applied Physics, 48, 455104.

Shaw, T., Roy, A. & Mitra, D. (2016). Efficiency Enhancement of Wireless Power Transfer System Using MNZ Metamaterials. Progress In Electromagnetics Research C, 68, 11–19.

Soemphol, C., Sonsilphong, A. & Wongkasem, N. (2014). Metamaterials with Near-zero Refractive Index Produced using Fishnet Structures. Journal of Optics, 16, 015104.

Sun, L., Ma, D. & Tang, H. (2018). A review of Recent Trends in Wireless Power Transfer Technology and Its Applications in Electric Vehicle Wireless Charging. Renewable and Sustainable Energy Reviews, 91, 490-503.

Urzhumov, Y. & Smith, D.R. (2011). Metamaterial-enhanced Coupling between Magnetic Dipoles for Efficient Wireless Power Transfer. Physical Review B, 83, 205114.

Wang, B., Nishino, T. & Teo, K.H. (2010). Wireless Power Transmission Efficiency Enhancement with Metamaterials. Proceedings of the IEEE International Conference on Wireless Information Technology and Systems (ICWITS’10) (pp. 1-4). USA.: Honululu.

Wang, B., Teo, K.H., Nishino, T., Yerazunis, W., Barnwell, J. & Zhang, J. (2011). Wireless Power Transfer with Metamaterials. Proceedings of European Conference on Antennas and Propagation (EuCAP 2011) (pp. 3905-3908.). Italy: Rome.

Wang, B., Teo, K.H., Tamotsu, N., Yerazunis, W., Barnwell, J. & Zhang, J. (2011). Experiments on Wireless Power Transfer with Metamaterials. Apply Physics Letters, 98, 254101.

Wang, B., Yerazunis, W. & Teo, K.H. (2013). Wireless Power Transfer: Metamaterials and Array of Coupled Resonators. Proceeding of IEEE, 101(6) 1359-1368.

Yan, Z., Song, B., Zhang, K., Wen, H., Mao, Z. & Hu. Y. (2018). Eddy Current Loss Analysis of Underwater Wireless Power Transfer Systems with Misalignments. AIP Advances, 8(10), 101421.

Zhang, Y., Tang, H., Yao, C., Li, Y. & Xiao, S. (2015). Experiments on Adjustable Magnetic Metamaterials Applied in Megahertz Wireless Power Transmission. AIP Advance, 5, 017142.

Zhang, Z., Zhang, B., Deng, B., Wei, X., & Wang, J. (2018). Opportunities and Challenges of Metamaterial-based Wireless Power Transfer for Electric Vehicles. Wireless Power Transfer, 5(1), 9-19.

Downloads

Published

2020-11-30

How to Cite

Soemphol, C., & Angkawisittpan, N. (2020). EFFICIENCY ENHANCEMENT OF WIRELESS POWER TRANSFER SYSTEM WITH METAMATERIALS. PSRU Journal of Science and Technology, 5(3), 1–11. Retrieved from https://ph01.tci-thaijo.org/index.php/Scipsru/article/view/241001