CREATION MODEL OF TIME-DEPENDENT LOWERING OPERATOR AND RAISING OPERATOR UNDER TIME-DEPENDENT EXTERNAL DAMPING FORCE SIMPLE HARMONIC OSCILLATOR
Keywords:
Lowering operator, Raising operator, Heisenberg equationAbstract
In this research paper, we developed a theory and model of the forced simple harmonic oscillators in quantum mechanics system in a framework of a general approach to the Heisenberg picture. We can be used the time-dependent Hamiltonian for the forced simple harmonic oscillators. We use first-order ordinary linear differential equation to solve the time-dependent lowering operator and raising operator. We evaluate the lowering operator and raising operator as the function of time for particle mass depend on the parameter frequency of oscillation , the damping coefficient of particle bound in the simple harmonic oscillator potential, the initial force .
References
Andrews, M. (2010). Quantum mechanics with uniform forces. American Journal of Physics, 78(12), 1361-1364.
Andrey, L.S., & Andrey, T.B. (2010). Quantum oscillator under external impulse force. Materials Physics and Mechanics, 9, 1-10.
Carruthers, P., & Michael, M. N. (1965). Coherent States and the Forced Quantum Oscillator. American Journal of Physics, 33, 537-543.
Chew, W. C., Liu, A. Y., Salazar-Lazaro, C. H., & Dong, Y. N., (2019). Hamilton equations, commutator and energy conservation. quantum report, 1, 295-303.
Chew, W. C., Liu, A. Y., Salazar-Lazaro, C. H., & Sha, W. E. I., (2016). Quantum electromagnetics: A new look-part I and part II. IEEE J. Multiscale Multiphys. Comput. Tech, 1, 73-97.
Cordero-Soto, R., Suazo, E., & Suslov, S. K., (2009). Models of damped oscillators in quantum mechanics. Journal of Physical Mathematics, 1, 1-16.
Dirac, P.A.M. (1981). The principles of quantum mechanics. UK: Oxford University Press, Oxford.
Dirar, M., Abdalgadir, L. M., & Elhouri, S. A., (2013). Heisenberg spatial quantum equation. Journal of Applied and Industrial Sciences, 1(2), 16-20.
Liang, P., Marthaler, M., & Guo, L. (2018). Floquet many-body engineering: topology and many-body physics in phase space lattices. New J. Phys, 20 023043, 1-25.
Moya-Cessa, H., Moya-Cessa, J.R., & Berriel-Vald´os, L.R. (2008). Introduction to quantum optics: quasiprobability distribution functions. Some Thopics of Mod. Opt., 1(1), 283-313.
Tikjha, W., Normai, T., Jittburus,U., & Pumila, A. (2018). Periodic with period 4 of a piecewise linear system of difference equations with initial conditions being some points on positive y axis. PSRU Journal of Science and Technology, 3(2), 26-34.
Downloads
Published
How to Cite
Issue
Section
License
กองบรรณาธิการขอสงวนสิทธิ์ในการปรับปรุงแก้ไขตัวอักษรและคำสะกดต่างๆ ที่ไม่ถูกต้อง และต้นฉบับที่ได้รับการตีพิมพ์ในวารสาร PSRU Journal of Science and Technology ถือเป็นกรรมสิทธิ์ของคณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏพิบูลสงคราม และ
ผลการพิจารณาคัดเลือกบทความตีพิมพ์ในวารสารให้ถือมติของกองบรรณาธิการเป็นที่สิ้นสุด