THE QUALITY DETECTION OF CEMENT BAGS BY USING IMAGE PROCESSING WITH CONVOLUTIONAL NEURAL NETWORKS CASE STUDY OF A MANUFACTURE PRODUCTION LINE OF CEMENT BAGS

  • Watcharachai Kongsiriwattana Faculty of Industrial Technology and Management, King Mongkut's University of Technology North Bangkok
  • Sarunya Sawangsri Faculty of Industrial Technology and Management, King Mongkut's University of Technology North Bangkok
Keywords: Image processing, Convolutional neural network, Machine learning

Abstract

The objective of this research aims to apply a machine learning model to detect and separate the quality of cement paper bags on the production line manufacture process. There are three proposed models to implement including 1) model for checking the unqualified and blurred trademark on cement paper bags, 2) model for checking incomplete letter and trademark on cement paper bags and 3) model for detecting unclear adhesive of the cement paper bag valve. This study has applied a convolutional neural network (CNN) and VGG 16, based on python programming language, to learn the types of an image from cement paper bags. There are three scenarios to consider in this study. The first scenario focuses on a letter and trademark on a cement paper bag, which is blurred and incomplete. The second scenario only pays attention to an incomplete letter and trademark. The third scenario considers unclear adhesive of the cement paper bag valve. The image of cement paper bags on the production line manufacture process was collected and the Python language programming was selected to implement proposed models. The results of this research revealed that the first scenario shows F1-Score 95% for qualified cement paper bags and F1-Score 92% for unqualified cement paper bags, the second scenario shows F1-Score 100%, and the third scenario shows F1-Score 100% for qualified and unqualified cement paper bags, respectively.

Downloads

Download data is not yet available.

References

จิตรลดา พิศาลสุพงศ์ และสุพัตรา ศรีภูมิเพชร. (2560). การพัฒนาวิทยาศาสตร์ เทคโนโลยี วิจัย และนวัตกรรม. สืบค้นเมื่อ 5 มกราคม 2563, จาก https://waa.inter.nstda.or.th/stks/pub/2018/20181106-st-research-innovation development strategy.pdf

นพวัชร์ สำแดงเดช. (2560). การตรวจจับหน้าตัดของปลายท่อนซุงจากภาพถ่ายด้านท้ายรถบรรทุกไม้ยูคาลิปตัส. (วิทยานิพนธ์ปริญญามหาบัณฑิต). จุฬาลงกรณ์มหาวิทยาลัย, คณะวิศวกรรมศาสตร์.

มนัสกานต์ เสน่หา. (2559). การทำนายอายุการใช้งานคงเหลือของเครื่องจักรด้วยเน็ตเวิร์กคอนโวลูชันเชิงลึกที่เพิ่ม. (วิทยานิพนธ์ปริญญามหาบัณฑิต). จุฬาลงกรณ์มหาวิทยาลัย, คณะวิศวกรรมศาสตร์.

Adege, A. B., Yen, L., Lin, H. P., Yayeh, Y., Li, Y. R., Jeng, S. S., & Berie, G. (2018, April). Applying Deep Neural Network (DNN) for large-scale indoor localization using feed-forward neural network (FFNN) algorithm. Proceedings of the 2018 IEEE International Conference on Applied System Invention (ICASI), Japan, 814-817.

Behnke, S. (2003). Hierarchical neural networks for image interpretation, Vol. 2766. New York: Springer.

Essid, O., Laga, H., & Samir, C. (2018). Automatic detection and classification of manufacturing defects

in metal boxes using deep neural networks. PloS one, 13(11), e0203192.

Jian, C., Gao, J., & Ao, Y. (2017). Automatic surface defect detection for mobile phone screen glass based a machine vision. Applied Soft Computing, 52, 348-358.

Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2019). A survey of the recent architectures of deep convolutional neural networks. arXiv: 1901.06032.

Li, L., Ota, K., & Dong, M. (2018). Deep learning for smart industry: Efficient manufacture inspection system with fog computing. IEEE Transactions on Industrial Informatics, 14(10), 4665-4673.

Russell, S. J., Norvig, P., & Davis, E. (2010). Artificial intelligence: a modern approach. (3rd ed). Upper Saddle River, NJ: Prentice Hall.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition.

arXiv: 1409.1556.

Published
2020-04-27
Section
บทความวิจัย