Antibacterial activity of Rosa damascena Extract against Acne- Inducing Bacteria (Cutibacterium acnes)
Main Article Content
Abstract
This study aimed to evaluate the antibacterial activity of crude ethanolic extract from Rosa damascena petals against Cutibacterium acnes, an anaerobic bacterium that plays a significant role in the pathogenesis of inflammatory acne, a common dermatological condition in the general population. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the broth macro-dilution method at concentrations of 200, 100, 50, 25, 12.5, 6.25, 3.125, and 1.5625 mg/mL. The crude extract was obtained using 95% ethanol, yielding 6.41% (w/w) of the dried petal weight.
The results revealed that the extract exhibited both inhibitory and bactericidal effects against C. acnes with MIC and MBC values of 6.25 mg/mL. In comparison, tetracycline a commonly used antibiotic in acne treatment demonstrated significantly lower MIC and MBC values of 0.9375 µg/mL, indicating superior antibacterial efficacy. However, prolonged use of antibiotics may contribute to the emergence of resistant bacterial strains.
Therefore, R. damascena extract presents a promising natural alternative for the development of anti-acne skincare products or therapeutic agents. Utilizing plant-derived antimicrobials may help reduce dependency on antibiotics and mitigate the risk of antibiotic resistance, offering long-term benefits to public health.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ความคิดเห็นและข้อเสนอแนะใดๆ ที่นำเสนอในบทความเป็นของผู้เขียนแต่เพียงผู้เดียว โดยบรรณาธิการ กองบรรณาธิการ และคณะกรรมการวารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยปทุมธานี ไม่ได้มีส่วนเกี่ยวข้องแต่อย่างใด มหาวิทยาลัย บรรณาธิการ และกองบรรณาธิการจะไม่รับผิดชอบต่อข้อผิดพลาดหรือผลที่เกิดจากการใช้ข้อมูลที่ปรากฏในวารสารฉบับนี้
References
วาสนา ประภาเลิศ และวิมลรัตน์ พจน์ไตรทิพย์. (2565). ปริมาณสารสำคัญ ฤทธิ์ทางชีวภาพ และเทคนิคการสกัดน้ำมันหอมระเหยจากดอกกุหลาบอินทรีย์จากกลุ่มเกษตรกรในอำเภอเชียงดาว จังหวัดเชียงใหม่ สู่การพัฒนาผลิตภัณฑ์น้ำหอมและเครื่องสำอาง. รายงานวิจัย, มหาวิทยาลัยเชียงใหม่.
พสุธร อุ่นอมรมาศ และสรณะ สมโน. (2559). การวิเคราะห์หาสารสำคัญและฤทธิ์การต่อต้านอนุมูลอิสระของดอกไม้กินได้บางชนิด. วารสารเกษตร, 32(3), 435–445.
รัตนา อินทรานุปกรณ์. (2550). การตรวจสอบและการสกัดแยกสารสำคัญจากสมุนไพร (พิมพ์ครั้งที่ 2). กรุงเทพมหานคร: แอคทีฟ พรินท์.
Bojar, R. A., & Holland, K. T. (2004). Acne and Propionibacterium acnes. Clinics in Dermatology, 22(5), 375–379. https://doi.org/10.1016/j.clindermatol.2004.03.005
Chroho, M., Bouymajane, A., Oulad El Majdoub, Y., Cacciola, F., Mondello, L., Aazza, M., Zair, T., & Bouissane, L. (2022). Phenolic composition, antioxidant and antibacterial activities of extract from flowers of Rosa damascena from Morocco. Separations, 9(9), 247. https://doi.org/10.3390/separations9090247
Chroho, S., El Mihyaoui, A., El Omari, N., Kandri, N., Aanniz, T., & El Mouahid, A. (2022). Antibacterial activity of Rosa damascena essential oil against Gram-positive and Gram-negative bacteria. Microbial Pathogenesis, 165, 105472.
Cock, I. E. (2025). Ficus racemosa L. leaf extracts inhibit the growth of the acne vulgaris causing bacterium Cutibacterium acnes. Pharmacognosy Communications, 15(3), 141–148. https://doi.org/10.5530/pc.2025.3.17
Del Rosso, J. Q., Leyden, J. J., et al. (2016). Mechanisms of antibiotic resistance in Cutibacterium acnes. Journal of Clinical and Aesthetic Dermatology, 9(10), 25–32.
Dréno, B., Pécastaings, S., Corvec, S., Veraldi, S., Khammari, A., & Roques, C. (2018). Cutibacterium acnes-induced inflammation in acne. Journal of the European Academy of Dermatology and Venereology, 32(S2), 5–14. https://doi.org/10.1111/jdv.15043
Fatemeh, F., Karimi, A., Abbassion, M., Rad, P. K., & Yazdi, M. K. (2015). Extraction of Rosa damascena as an antibacterial agent. International Journal of Mycobacteriology, 4, 169. https://doi.org/10.1016/j.ijmyco.2014.11.053
Field, A. (2013). Discovering statistics using IBM SPSS Statistics (4th ed.). Sage Publications.
Girsang, V., Nufus, N., Saptawati, T., Sa’adah, A., Wibowo, A. D. K., & Vidiani, A. A. P. P. (2025). Antibacterial effectiveness of glodokan tiang (Polyalthia longifolia) leaf extract against Cutibacterium acnes and Staphylococcus epidermidis. Journal of Pharmaceutical and Sciences, 8(2), 761–769. https://doi.org/10.36490/journal-jps.com.v8i2.815
Gu, M. K., Song, H. Y., Hong, E. A., Jung, Y. J., Jo, Y. J., & Kim, K. Y. (2024). Skin microbiota growing effects and physicochemical properties of medicinal plant extracts. Journal of the Korean Society of Food Science and Nutrition, 53(10), 1065–1073. https://doi.org/10.3746/jkfn.2024.53.10.1065
Hajhashemi, V., Ghannadi, A., & Hajiloo, M. (2010). Analgesic and anti-inflammatory effects of Rosa damascena hydroalcoholic extract and its essential oil in animal models. Iranian Journal of Pharmaceutical Research: IJPR, 9(2), 163–168.
Kılıç, G., Yeşilada, E., & Bedir, E. (2019). Inhibitory activity of Turkish medicinal plants on acne vulgaris. Journal of Ethnopharmacology, 241, 111978.
Kılıç, S., Okullu, S., Kurt, Ö., Sevinç, H., Dündar, C., Altınordu, F., & Türkoğlu, M. (2019). Efficacy of two plant extracts against acne vulgaris: Initial results of microbiological tests and cell culture studies. Journal of Cosmetic Dermatology, 18(4), 1061–1065. https://doi.org/10.1111/jocd.12814
Kumar, B., Pathak, R., Mary, P. B., Jha, D., Sardana, K., & Gautam, H. K. (2016). New insights into acne pathogenesis: Exploring the role of acne-associated microbial populations. Dermatologica Sinica, 34(2), 67–73. https://doi.org/10.1016/j.dsi.2015.12.004
Liu, Y., Zhu, J., Liu, Z., Zhi, Y., Mei, C., & Wang, H. (2025). Flavonoids as promising natural compounds for combating bacterial infections. International Journal of Molecular Sciences, 26(6), 2455. https://doi.org/10.3390/ijms26062455
Nakatsuji, T., Liu, Y. T., Huang, C. P., Gallo, R. L., & Huang, C. M. (2016). Antibiotic resistance in Propionibacterium acnes: Global concerns and future perspectives. Future Microbiology, 11(6), 763–771.
Nayebi, N., Khalili, N., Kamalinejad, M., & Emtiazy, M. (2017). A systematic review of the efficacy and safety of Rosa damascena Mill. with an overview on its phytopharmacological properties. Complementary Therapies in Medicine, 34, 129–140. https://doi.org/10.1016/j.ctim.2017.08.014
Paulsen, A. Q., Seaman, J. L., & Lall, N. (2025). Anti-acne and anti-hyperpigmentation potential of selected South African bryophytes with identification of oleamide as a lead compound. South African Journal of Botany, 184, 193–204. https://doi.org/10.1016/j.sajb.2025.05.055
Ramburrun, P., Kumar, S., Lall, N., & Soliman, M. E. (2024). Herbal antimicrobials: New solutions to multidrug-resistant acne-inducing pathogens. Phytomedicine Plus, 4(1), 100249.
Ross, J. I., Snelling, A. M., Carnegie, E., Coates, P., Cunliffe, W. J., Bettoli, V., Tosti, G., Katsambas, A., Galvan Peréz Del Pulgar, J. I., Rollman, O., Török, L., Eady, E. A., & Cove, J. H. (2003). Antibiotic-resistant acne: Lessons from Europe. The British Journal of Dermatology, 148(3), 467–478. https://doi.org/10.1046/j.1365-2133.2003.05067.x
Salazar, J. (2025). Role of polyphenols in dermatological diseases: Exploring pharmacotherapeutic mechanisms and clinical implications. Pharmaceuticals, 18(2), 247. https://doi.org/10.3390/ph18020247
Shah, M., Suhagia, B., Goswami, S., & Patwari, A. (2025). Anti-acne activity of minocycline hybrids. Journal of Young Pharmacists, 17(1), 160–165. https://doi.org/10.5530/jyp.20251401
Shohayeb, M., Saleh, E.-S., Bazaid, S., & Maghrabi, I. (2014). Antibacterial and antifungal activity of Rosa damascena MILL. essential oil, different extracts of rose petals. Global Journal of Pharmacology, 8, 1–7.
Silva, N. C. C., & Fernandes Júnior, A. (2020). Biological properties of medicinal plants: A review of their antimicrobial activity. Journal of Venomous Animals and Toxins including Tropical Diseases, 26, e20200007. https://doi.org/10.1590/S1678-91992010000300006
Sutaria, A. H., Masood, S., Saleh, H. M., et al. [Online]. (2023). Acne vulgaris. Retrieved (2024, 17 August). Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK459173/
Tan, J. K. L., & Bhate, K. (2015). A global perspective on the epidemiology of acne. British Journal of Dermatology, 172(S1), 3–12. https://doi.org/10.1111/bjd.13462
Trendafilova, A., Staleva, P., Petkova, Z., Ivanova, V., Evstatieva, Y., Nikolova, D., Rasheva, I., Atanasov, N., Topouzova-Hristova, T., Veleva, R., Moskova-Doumanova, V., Dimitrov, V., & Simova, S. (2023). Phytochemical profile, antioxidant potential, antimicrobial activity, and cytotoxicity of dry extract from Rosa damascena Mill. Molecules, 28(22), 7666. https://doi.org/10.3390/molecules28227666
Trendafilova, A., Todorova, M., & Nikolova, M. (2023). Antibacterial potential of essential oils and phenolic compounds: Mechanisms and synergy. Pharmaceuticals, 16(3), 331.
Ulusoy, S., Bosgelmez-Tinaz, G., & Sezik, E. (2009). Chemical composition and antimicrobial activity of Rosa damascena essential oil. Chemistry of Natural Compounds, 45(2), 265–268.
White, R. L., Burgess, D. S., Manduru, M., & Bosso, J. A. (1996). Comparison of three different in vitro methods of detecting synergy: Time-kill, checkerboard, and E test. Antimicrobial Agents and Chemotherapy, 40(8), 1914–1918. https://doi.org/10.1128/AAC.40.8.1914
Zaenglein, A. L. (2018). Acne vulgaris. New England Journal of Medicine, 379(14), 1343–1352. https://doi.org/10.1056/NEJMcp1702493
Zhang, H., Guo, L., & Li, X. (2022). Plant-derived flavonoids and their mechanisms in antibacterial resistance: A review. Frontiers in Pharmacology, 13, 849432.