Radiation Safety Assessment of Airborne Particulate Matter Monitoring Devices Using Radioactive Nuclides in Public Areas

Main Article Content

Karnchana Sathupun
Jittapan Ineead
piyanooch nedkun

Abstract

This study assessed the radiation safety of Beta Attenuation Monitors (BAM) used for measuring airborne particulate matter, which use radioactive nuclides Carbon-14 (C-14), Krypton-85 (Kr-85), and Promethium-147 (Pm-147) as beta-emitting sources. Radiation exposure was assessed by measuring ambient dose levels at monitoring sites and by simulating potential release scenarios. Radiation doses were analyzed for two scenarios:  normal operation (radioactive materials with sealed) and accidental environmental release. In normal operation, all three radionuclides resulted in radiation doses for both workers and the public that were below the dose limits set by the International Basic Safety Standards (IAEA GSR Part 3). In an accidental release, estimated doses for workers and members of the public over two years old remained under IAEA emergency exposure reference levels. However, for children under two, C-14 and Pm-147 doses (70.30 and 62.90 millisieverts, respectively) exceeded the 50.00 millisievert IAEA emergency reference level, highlighting particular risk to this group. These results provide key data to inform radiation safety monitoring, preparedness, and emergency response planning by the Office of Atoms for Peace (OAP).

Article Details

How to Cite
Sathupun, K. ., Ineead, J., & nedkun, piyanooch. (2025). Radiation Safety Assessment of Airborne Particulate Matter Monitoring Devices Using Radioactive Nuclides in Public Areas. KKU Science Journal, 53(3), 471–483. https://doi.org/10.14456/kkuscij.2025.37
Section
Research Articles

References

ส่วนคุณภาพอากาศ กองจัดการคุณภาพอากาศและเสียง กรมควบคุมมลพิษ กระทรวงทรัพยากรธรรมชาติและแวดล้อม. (2567). คู่มือแนวทางการคัดเลือกพื้นที่ติดตั้งสถานีตรวจวัดคุณภาพอากาศในบรรยากาศของประเทศไทย. กรุงเทพฯ: บริษัท สไตล์ครีเอทีฟเฮ้าส์ จำกัด.

Adams, G.E. and Wilson, A. (1993). Radiation Toxicology in General and Applied Toxicology. New York: M. Stockton Press. 1397 - 1415.

Cember, H. and Johnson, T.E. (2009). Introduction to Health Physics. (4th ed). New York: McGraw-Hill.

ChooChuay, C., Pongpiachan, S., Tipmanee, D., Suttinun, O., Deelaman, W., Wang, Q., Xing, L., Li, G., Han, Y., Palakun, J. and Cao, J. (2020). Impacts of PM2.5 sources on variations in particulate chemical compounds in ambient air of Bangkok, Thailand. Atmospheric Pollution Research 11(9): 1657 - 1667. doi: 10.1016/j.apr.2020.06.030.

Cockerham, L.G., Mickley, A.G., Walden, T.L. and Stuart, B.O. (1994). Ionizing radiation. In: Principle and Method of Toxicology. (3rd ed). A.W. Hayes, Ed. New York: Raven Press. 447 - 496.

Delacroix, D., Guerre, J. P., Leblanc, P. and Hickman, C. (2002). Radionuclide and Radiation Protection Data Handbook 2002. (2nd ed). Ashford: Nuclear Technology Publishing. 1 - 168.

Ellenhorn, M.J., Schonwald, S., Ordog, G. and Wasserberger, J. (1997). Ellenhorn’s medical toxicology: Diagnosis and treatment of human poisoning. (2nd ed). Bangkok: Williams & Wilkins. 1682 – 1723.

IAEA. (2011). Radiation Protection and Safety of Radiation Sources, IAEA Safety Standards Series No. GSR Part 3 (Interim). Vienna: IAEA.

IAEA. (2012). Exemption from Regulatory Control of Goods Containing Small Amounts of Radioactive Material, IAEA-TECDOC-1697. Vienna: IAEA.

IAEA. (2014). Radiation Protection and Safety of Radiation Sources, IAEA Safety Standards Series No. GSR Part 3. Vienna: IAEA.

MET ONE Instruments Inc. (2008). BAM-1020 Particulate Monitor Operation Manual. Oregon: MET ONE.

Obodovskiy, I. (2019). Radiation: Fundamentals, Applications, Risks and Safety. (1st ed). Elsevier. 259 - 273.

Radiation and Nuclear Safety Authority. (2007). Calculation of the Dose Caused by Internal Radiation, Guide ST 7.3. Helsinki: STUK.

Riley, M.L., Chambers, S.D. and Williams, A.G. (2023). Inter-Comparison of Radon Measurements from a Commercial Beta-Attenuation Monitor and ANSTO Dual Flow Loop Monitor. Atmosphere 14(9): 1333. doi: 10.3390/atmos14091333

Samae, H., Suriyawong, P., Yawootti, A., Phairuang, W. and Sampattagul, S. (2025). Precision and Accuracy Analysis of PM2.5 Light-Scattering Sensor: Field and Laboratory Experiments. Atmosphere 16(1): 76. doi: 10.3390/atmos16010076.

Sangkham, S., Phairuang, W., Sherchan, S.P., Pansakun, N., Munkong, N., Sarndhong, K., Islam, Md. A. and Sakunkoo, P. (2024). An update on adverse health effects from exposure to PM2.5. Environmental Advances 18: 100603. doi: 10.1016/j.envadv.2024.100603.

Schweizer, D., Cisneros, R. and Shaw, G. (2016). A comparative analysis of temporary and permanent beta attenuation monitors: The importance of understanding data and equipment limitations when creating PM2.5 air quality health advisories, Atmospheric Pollution Research 7(5): 865 - 875. doi: 10.1016/j.apr.2016.02.003.

Shukla, K. and Aggarwal, S.G. (2022). A Technical Overview on Beta-Attenuation Method for the Monitoring of Particulate Matter in Ambient Air. Aerosol and Air Quality Research 22(12): 220195. doi: 10.420 9/aaqr.220195.

Thiagarajah, J.R. and Verkman, A.S. (2012). Physiology of the Gastrointestinal Tract. (5th ed). Academic Press. 1757 - 1780.

U.S. Department of Health, Education, and Welfare. (1970). Radiological Health Handbook. Washington D.C.: U.S. Government Printing Office.