The Analysis System of Assessment of Smartphones Pawned with Deep Learning Supakorn Nakvijitpaitoon1, Tawin Tanawong1,*
Main Article Content
Abstract
A method was developed web application of price assessment of a smartphones pawned by using Deep learning. In the experiments, three datasets collected by smartphones for a total of 4,026 subjects are used for eveluations. It is proposed the forecasting with the image processing, the TensorFlow library, the Deep learning library, and the CNN algorithm techniques. The experiments show that the prototype model for price assessment of a smartphones pawned achieves an accuracy values of the front and back view images of smartphones status at 74.50% and at 82.90%, respectively. A prototype model was developed web application that is designed to work on all devices by using software tools such as subline text, PHP, and JavaScript.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ลิขสิทธิ์ต้นฉบับที่ได้รับการตีพิมพ์ในวารสารนวัตกรรมวิทยาศาสตร์เพื่อการพัฒนาอย่างยั่งยืนถือเป็นกรรมสิทธิ์ของคณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยสวนดุสิต ห้ามผู้ใดนำข้อความทั้งหมดหรือบางส่วนไปพิมพ์ซ้ำ เว้นแต่จะได้รับอนุญาตอย่างเป็นลายลักษณ์อักษรจากคณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยสวนดุสิต นอกจากนี้ เนื้อหาที่ปรากฎในบทความเป็นความรับผิดชอบของผู้เขียน ทั้งนี้ไม่รวมความผิดพลาดอันเกิดจากเทคนิคการพิมพ์
References
Blog.pjjop. (2021). Introduction to Deep learning (machine learning pipeline). [online]. Retrieved December 3, 2021, from the website https://blog.pjjop.org/deep-learning/.
Boonkidram, S., and Sriwiboon, N. (2020). Physical quality investigation of germinated brown rice by using image processing. Journal of Information Science and Technology, 10(2), 101–109. [In Thai].
Github. (2021). A generic image classifier program using TensorFlow. [online]. Retrieved December 3, 2021, from the website https://github.com/ burliEnterprises/ tensorflow-image-classifier.
Glurgeek. (2021). Convolutional neural network (CNN) what is it?. [online]. Retrieved December 3, 2021, from the website https://www.glurgeek .com/education/ml-cnn/.
Greedharry, M., Seewoogobin, V., and Sahib-Kaudeer, N. G. (2019). A smart mobile application for complaints in mauritius. In information systems design and intelligent applications. Springer, Singapore. pp. 345–356.
Hemanth, D. J., and Estrela, V. V. (Eds.). (2017). Deep learning for image processing applications (Vol. 31). IOS Press.
Hongboonmee, N., and Jantawong, N. (2020). Apply of Deep learning techniques to measure the sweetness level of watermelon via smartphone. Journal of Information Science and Technology, 10(1), 59–69. [In Thai].
Hunt, J. (2019). Sockets in python BT-Advanced guide to python 3 programming, Cham: Springer International Publishings, pp. 457–470.
Khamthip, N. and Tanawong, T. (2019). The analysis system of sweet tamarind quality with Deep learning. Naresuan University. Faculty of Science. [In Thai].
Phonehip. (2021). Second hand smartphone: specification and price. [online] Retrieved December 3, 2021, from the website https://www.phonehip. com/.
Priceza. (2021). Price of smartphone, accessories and communication devices. [online] Retrieved December 20, 2021, from the website https://www.priceza .com/b/mobile-gadget.
Relan, K. (2019). Database modeling in flask. In building REST APIs with flask.. Apress, Berkeley, Canada. pp. 27–58.
Rlacksdid93. (2021). [Python] machine learning #1. perceptron. [online]. Retrieved December 3, 2021, from the website https://rlacksdid93. wixsite.com/930724/post/python-machine-learning-1-perceptron.
Sanuksan, J. and Surinta, O. (2019). Deep convolutional neural networks for plant recognition in the natural environment. Journal of Science and Technology MSU, 38(2). 113– 124. [In Thai].
Silaparasetty, V. (2020). "Neural Networks" in Deep Learning Projects Using TensorFlow 2: Neural Network Development with Python and Keras, Berkeley, CA, USA:Apress, pp. 71–86.
Stanleyulili. (2021). How to install git bash on windows. [online]. Retrieved December 3, 2021, from the website https://www.stanleyulili .com/ git/how-to-install-git-bash-on-windows/.