คุณสมบัติทางเคมีฟิสิกส์ กายภาพ และเคมีของสารเอนแคปซูลสารสกัดแอนโทไซยานิน จากเศษข้าวหอมนิล กรุณรัตน์ สกุลนามรัตน์* นาฏยา มีสังเกตุ พัฒนา พละที ยุวดี สมสุข ธนานพ แก้วงาม พีรพล แว่นแก้ว บุญรักษา บูรณ์เจริญ และ นันติยา ยิ่งมีมา

Main Article Content

กรุณรัตน์ สกุลนามรัตน์

บทคัดย่อ

สารเอนแคปซูลแอนโทไซยานินจากเศษข้าวหอมนิล (Homnil, HN) เตรียมด้วยสารห่อหุ้มแบบผสมระหว่างมอลโตเด็กซ์ตริน เด็กซ์โตรสอิควิวาเลนซ์ 20 (maltodextrin dextrose equivalent 20, MD20) กับ อินนูลิน (inulin, IN) (MD20:IN) หรือเพคติน (pectin, PEC) (MD20:PEC) อัตราส่วนสารสกัดต่อสารห่อหุ้มเท่ากับ 1:3  ทำแห้งแบบลูกกลิ้งคู่ (double drum drying technique, DD) พบว่าสารเอนแคปซูล MD20:IN มีประสิทธิภาพในการเอนแคปซูเลชัน ปริมาณแอนโทไซยานิน และความสามารถในการละลาย (95.36±2.55 g/100 g) มากกว่าสารเอนแคปซูล MD20:PEC และการทำให้เปียกใช้ระยะเวลาสั้นกว่า ลักษณะของอนุภาควิเคราะห์ด้วย X-ray diffractometer ได้กราฟเป็นระฆังคว่ำ ฐานกว้าง จุดพีคของกราฟมีค่า 2q เท่ากับ 18.47–19.96° ซึ่งเป็นอนุภาคแบบอสัณฐาน (amorphous) เมื่อส่องกล้อง Scanning electron microscope กำลังขยาย 200 เท่า พบว่ารูปร่างของอนุภาคไม่สมมาตร (irregular shape) ขนาดไม่สม่ำเสมอและมีพื้นผิวเรียบ การวิเคราะห์ด้วยเทคนิคฟูเรียร์ทรานฟอร์มอินฟราเรดสเปกโตรสโกรปี (FT–IR) เพื่อศึกษาชนิดของหมู่ฟังก์ชันในสารประกอบ ซึ่งใช้วิเคราะห์การเกาะจับตัวกันระหว่างสารออกฤทธิ์สำคัญ (core) และสารห่อหุ้ม (carrier agents) พบว่าสารสกัดแอนโทไซยานินจากข้าวหอมนิล (non-encapsulated powder) มีการเกาะกันระหว่างหมู่ของสารสกัดกับสารห่อหุ้ม สารเอนแคปซูลทั้ง 2 ชนิด มีความคงตัวต่อความร้อนที่อุณหภูมิ 80 90 และ 100 องศาเซลเซียส ไม่แตกต่างกัน แสดงให้เห็นว่าการเอนแคปซูเลชันช่วยห่อหุ้มสารสำคัญได้

Article Details

บท
นิพนธ์ต้นฉบับ

References

กองพัฒนาผลิตภัณฑ์ข้าว. (2561). ข้าวหอมนิล. [ออนไลน์]. สืบค้นเมื่อ 1 พฤษภาคม, 2564, จาก https://www.gonkham.com/2018/pages/rice_homeNil.php.

AOAC. (2000). Official Methods 920.149, 17th Ed., Vol. II. Association of Official Analytical Chemist. Washington, DC.

AOAC. (2005). Official Methods of Analysis of the Association of Official Analytical Chemists, 14th Ed., Vol. II. Association of Official Analytical Chemist. Washington, DC.

Asem I. D., Imotomba R. K., Mazumder P. B., and Laishram J. M. (2015). Anthocyanin content in the black scented rice (Chakhao): its impact on human health and plant defense. Symbiosis, 66, 47–54. https://doi.org/10.1007/s13199-015-0329-z.

Beirão-da-Costa S., Duarte C., Bourbon A. I., Pinheiro A. C., Januário M. I. N., Vicente A. A., Beirão-da-Costa M. L., and Delgadillo I. (2013). Inulin potential for encapsulation and controlled delivery of Oregano essential oil. Food Hydrocolloids, 33(2), 199–206.

Bulatao R. M., Samin J. P. A., Salazar J. R., and Monserate J. J. (2017). Encapsulation of anthocyanins from black rice (Oryza Sativa L.) bran extract using chitosan-alginate nanoparticles. Journal of Food Research, 6(3), 40–47.

Chen X. Q., Nagao, N., Itani T., and Irifune K. (2012). Anti-oxidative analysis, and identification and quantification of anthocyanin pigments in different coloured rice. Food Chemistry, 135(4), 2783–2788. https://doi.org/10.1016/j.foodchem.2012.06.098.

Choi S. P., Kim S. P., Nam, S. H., and Friedman M. (2013), Antitumor effects of dietary black and brown rice brans in tumor-bearing mice: Relationship to composition. Molecular Nutrition and Food Research, 57(3), 390–400. https://doi.org/10.1002/mnfr.201200515.

Das A. B., Goud V. V., and Das C. (2019). Microencapsulation of anthocyanin extract from purple rice bran using modified rice starch and its effect on rice dough rheology. International Journal of Biological Macromolecules, 124, 573–581. https://doi.org/10.1016/j.ijbiomac.2018.11.247.

Di Battista C. A., Constenla D., Ramírez-Rigo M. V. and Piña J. (2015). The use of arabic gum, maltodextrin and surfactants in the microencapsulation of phytosterols by spray drying. Powder Technology, 286, 193–201.

Edris, A. E., Kalemba, D., Adamiec, J. and Piatkowski, M. (2016). Microencapsulation of Nigella sativa oleoresin by spray drying for food and nutraceutical applications. Food Chemistry, 204, 326–333.

Elert, E. (2014). Rice by the numbers: A good grain. Nature, 514, S50–S51. https://doi.org/10.1038/514S50a.

Ghosal S., Indira T. N., and Bhattacharya S. (2010). Agglomeration of a model food powder: effect of

maltodextrin and gum Arabic dispersions on flow behavior and compacted mass. Journal of Food Engineering, 96, 222–228.

Gonzalez-Paramas A. M., Brighenti V., Bertoni L., Marcelloni L., Ayuda-Duran B., Gonzalez-Manzano S.,

Pellati F., and Santos-Buelga C. (2020). Assessment of the in vivo antioxidant activity of an anthocyanin-rich bilberry extract using the Caenorhabditis elegans model. Antioxidants, 9(6), 509. https://doi.org/10.3390/antiox9060509.

Han S. J., Hong S. S., and Kim D. H. (2007). Antipruritic effect of black colored rice. Natural Product Sciences, 13(4), 373–377.

Idham Z., Muhamad I. I., and Sarmidi M. R. (2010). Degradation kinetics and colour stability of spray-dried encapsulated anthocyanins from Hibiscus sabdariffa L. Journal of Food Process Engineering, 35, 522–542.

Ito V. C., and Lacerda G. (2019). Black rice (Oryza sativa L.): A review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies., Food Chemistry, 301, 125304. https://doi.org/10.1016/j.foodchem.2019.125304.

Jaksomsak P., Rerkasem B., and Prom-U-Thai C. (2021). Variation in nutritional quality of pigmented rice varieties under different water regimes, Plant Production Science, 24:2, 244–255, https://doi.org/10.1080/1343943X.2020.1819164.

Jung Y. K., Jo K. S., Rho S. J., and Kim Y. R. (2020). pH-dependent antioxidant stability of black rice anthocyanin complexed with cycloamylose. LWT - Food Science and Technology, 129, 109474. https://doi.org/10.1016/j.lwt.2020.109474.

Khoo H. E., Azlan A., Tang S. T., and Lim S. M., (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food and nutrition research, 61(1), 1361779. https://doi.org/10.1080/16546628.2017.1361779.

Konczak I., and Zhang W. (2004). Anthocyanins-more than nature’s colours. BioMed Research International, 5, 239–240.

Kumar P., Senthamilselvi S., and Govindaraju M. (2014). Phloroglucinol-encapsulated starch biopolymer: preparation, antioxidant and cytotoxic effects on HepG2 liver cancer cell lines. RSC Advances, 4, 26787–26795.

Labuschagne P. (2018). Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review. Food Research International, 107, 227–247.

Lacerda E. C. Q., de Araujo Calado V. M., Monteiro M., Finotelli P. V., Torres A. G., and Perrone D. (2016). Starch, inulin and maltodextrin as encapsulating agents affect the quality and stability of jussara pulp microparticles. Carbohydrate Polymers, 151, 500–510.

Mar J. M., da Silva L. S., Lira A. C., Kinupp V. F., Yoshida M. R., Moreira W. P., Bruginski E., Campos

F. R., Machado M. B., de Souza T. P., Campelo P. H., de Araujo Bezerra J., and Sanches E. A. (2020). Bioactive compounds-rich powders: Influence of different carriers and drying techniques on the chemical stability of the Hibiscus acetosella extract. Powder Technology, 360, 383–391. https://doi.org/10.1016/j.powtec.2019.10.062.

Marcillo-Parra V., Tupuna-Yerovi D. S., González Z., and Ruales, J. (2021). Encapsulation of bioactive compounds from fruit and vegetable by-products for food application – A review. Trends in Food Science and Technology, 116, 11–23. https://doi.org/10.1016/j.tifs.2021.07.009.

Mahdavi S. A., Jafari S. M., Assadpour E., and Ghorbani M. (2016). Storage stability of encapsulated barberry’s anthocyanin and its application in jelly formulation. Journal of Food Engineering, 181, 59–66.

Mbanjo E. G. N., Kretzschmar T., Jones H., Ereful N., Blanchard C., Boyd L. A., and Sreenivasulu N. (2020). The Genetic Basis and Nutritional Benefits of Pigmented Rice Grain. Frontiers in genetics, 11, 229. https://doi.org/10.3389/fgene.2020.00229.

Mickus R. R., and B. S. Luh (1991). Rice Enrichment with Vitamins and Amino Acids. Rice: Volume I. Production/Volume II. Utilization. B. S. Luh. Boston, MA, Springer US: 454–468.

Milea S. A., Dima C. V., Enachi E., Dumitrascu L., Barbu V., Bahrim G. E., Alexe P., and Stanciuc N. (2020).

Combination of freeze drying and molecular inclusion techniques improves the bioaccessibility of microencapsulated anthocyanins from black rice (Oryza sativa L.) and lavender (Lavandula angustifolia L.) essential oils in a model food system. International Journal of Food Science and Technology, 55(12), 3585–3594. https://doi.org/10.1111/ijfs.14692.

Min S. W., Ryu S. N., and Kim D. H. (2010). Anti-inflammatory effects of black rice, cyanidin-3-O-beta-D-glycoside, and its metabolites, cyanidin and protocatechuic acid. International Immunopharmacology, 10, 959–966.

Norkaew O., Thitisut P., Mahatheeranont S., Pawin B., Sookwong P., Yodpitak S., and Lungkaphin A. (2019). Effect of wall materials on some physicochemical properties and release characteristics of encapsulated black rice anthocyanin microcapsules. Food Chemistry, 294, 493–502. https://doi.org/10.1016/j.foodchem.2019.05.086.

Oidtmann J., Schantz M., Mäder K., Baum M., Berg S., Betz M., Kulozik U., Leick S., Rehage H., Schwarz K., and Richling E. (2012). Preparation and comparative release characteristics of three anthocyanin encapsulation systems. Journal of Agricultural and Food Chemistry, 60(3), 844–851.

Pereira Jr V. A., de Arruda I. N. Q., and Stefani R. (2015). Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as Time–Temperature Indicators for application in intelligent food packaging. Food Hydrocolloids, 43, 180–188.

Pitija K., Nakornriab M., Sriseadka T., Vanavichit A., and Wongpornchai S. (2013). Anthocyanin content and antioxidant capacity in bran extracts of some Thai black rice varieties. International Journal of Food Science and Technology, 48, 300–308.

Reena M. B., Krishnakantha T. P., and Lokesh B. R. (2010). Lowering of platelet aggregation and serum eicosanoid levels in rats fed with a diet containing coconut oil blends with rice bran oil or sesame oil. Prostaglandins Leukotrienes and Essential Fatty Acids, 83, 151–160. https://doi.org/10.1016/j.plefa.2010.06.004.

Rezende Y. R. R. S., Nogueira J. P., and Narain N. (2018). Microencapsulation of extracts of bioactivecompounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: Chemical, morphological and chemometric characterization. Food Chemistry, 254, 281–291.

Rousta L. K., Bodbodak S., Nejatian M., Yazdi A. P. G., Rafiee Z., Xiao J., and Jafari S. M. (2021). Use of encapsulation technology to enrich and fortify bakery, pasta, and cereal-based products. Trends in Food Science and Technology. 118(A), 688–710. https://doi.org/10.1016/j.tifs.2021.10.029.

Sakulnarmrat K., and Konczak I., (2022). Encapsulation of Melodorum fruticosum Lour. anthocyanin-rich extract and its incorporation into model food. LWT - Food Science and Technology, 153, 112546. https://doi.org/10.1016/j.lwt.2021.112546.

Sakulnarmrat K., Sittiwong W., and Konczak I. (2022), Encapsulation of mangosteen pericarp anthocyanin-rich extract by spray drying. International Journal Food Science Technology, 57(2), 1237–1247. https://doi.org/10.1111/ijfs.15508.

Sakulnarmrat K., Wongsrikaew D., and Konczak I. (2021). Microencapsulation of red cabbage anthocyanin-rich extract by drum drying technique. LWT - Food Science and Technology, 137, 147110. https://doi.org/10.1016/j.lwt.2020.110473.

Samyor D., Das A. B., and Deka S. C. (2017). Pigmented rice a potential source of bioactive compounds: A review. International Journal of Food Science and Technology, 52, 1073–1081.

Sharif N., Khoshnoudi-Nia S., and Jafari S. M. (2020). Nano-microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Research International, 132, 109007. https://doi.org/10.1016.j.foodres.2020.109077.

Tan X. W., Kobayashi K., Shen L., Inagaki J., Ide M., Hwang S. S., and Matsuura E. (2020). Antioxidative attributes of rice bran extracts in ameliorative effects of atherosclerosis-associated risk factors. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e05743.

Thepthanee C., Liu C. C., Yu H. S., Huang H. S., Yen C. H., Li Y. H., Lee M. R., and Liaw E. T. (2021). Evaluation of phytochemical contents and in vitro antioxidant, anti-inflammatory, and anticancer activities of black rice leaf (Oryza sativa L.) extract and its fractions. Foods, 10(12), 2987. https://doi.org/10.3390/foods10122987.

Tonon R. V., Brabet C., and Hubinger M. D. (2010). Anthocyanin stability and antioxidant activity of spray-dried açai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Research International, 43(3), 907–914.

Tonon R. V., Brabet C., Pallet D., Brat P., and Hubinger M. D., (2009). Physicochemical and morphological characterization of açaí (Euterpe oleraceae Mart.) powder produced with different carrier agents. Journal of Food Science and Technology, 44, 1950–1958.

Vichit W., Saewan N., and Thitipromote N. (2012). Stability of freeze-dried encapsulated anthocyanins from black glutinous rice extract. In Pure and Applied Chemistry International Conference 2012 (PACCON 2012), January 11st–13th, 2012, Chiang Mai, Thailand.

Wahyuni A. S., Munawaroh R., and Da’I M. (2016). Antidiabetic mechanism of ethanol extract of black rice bran on diabetic rats. National Journal of Physiology, Pharmacy and Pharmacology, 6(2), 106–110.

Wang Q., Han P. H., Zhang M. W., Xia M., Zhu H. L., Ma J., Hou M. J., Tang Z. H., and Ling W. H. (2007). Supplementation of black rice pigment fraction improves antioxidant and anti-inflammatory status in patients with coronary heart disease. Asia Pacific Journal of Clinical Nutrition, 16(1), 295–301.

Wongwichai T., Teeyakasem P., Pruksakorn D., Kongtawelert P., and Pothacharoen P. (2019). Anthocyanins and metabolites from purple rice inhibit IL-1-induced matrix metalloproteinases expression in human articular chondrocytes through the NF-kB and ERK/MAPK pathway. Biomedicine and Pharmacotherapy, 112, 108610. https://doi.org/10.1016/j.biopha.2019.108610.

Wu G., Hui X., Wang R., Dilrukshi H. N. N., Zhang Y., Brennan M. A., and Brennan C. S. (2021). Sodium caseinate-blackcurrant concentrate powder obtained by spray-drying or freeze-dying for delivering structural and health benefits of cookies. Journal of Food Engineering, 299, 110466. https://doi.org/10.1016/j.jfoodeng.2020.110466.

Yamuangmorn S., and Prom-U-Thai C. (2021). The potential of high-anthocyanin purple rice as a functional ingredient in human health.Antioxidants, 10(6), 833. https://doi.org/10.3390/antiox10060833.