องค์ความรู้เพื่ออนาคต: แคลคูลัสควอนตัม (แคลคูลัสไม่มีลิมิต) อันดับเศษส่วน ธานินทร์ สิทธิวิรัชธรรม
Main Article Content
บทคัดย่อ
บทความนี้แนะนำแคลคูลัสควอนตัมอันดับเศษส่วนบางประเภท ได้แก่ แคลคูลัสเชิงผลต่าง, แคลคูลัส q และแคลคูลัสฮาห์น โดยได้แสดงแนวคิดและการสร้างตัวดำเนินการของแต่ละแคลคูลัสควอนตัมอันดับเศษส่วน
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ลิขสิทธิ์ต้นฉบับที่ได้รับการตีพิมพ์ในวารสารนวัตกรรมวิทยาศาสตร์เพื่อการพัฒนาอย่างยั่งยืนถือเป็นกรรมสิทธิ์ของคณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยสวนดุสิต ห้ามผู้ใดนำข้อความทั้งหมดหรือบางส่วนไปพิมพ์ซ้ำ เว้นแต่จะได้รับอนุญาตอย่างเป็นลายลักษณ์อักษรจากคณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยสวนดุสิต นอกจากนี้ เนื้อหาที่ปรากฎในบทความเป็นความรับผิดชอบของผู้เขียน ทั้งนี้ไม่รวมความผิดพลาดอันเกิดจากเทคนิคการพิมพ์
References
Wu G.C., Baleanu D. (2013). Discrete chaos in fractional sine and standard maps. Phys. Lett. A., 378, 484-487.
Wu G.C., Baleanu D. (2014). Discrete fractional logistic map and its chaos. Nonlinear Dyn., 75, 283-287.
Wu G.C., Baleanu D. (2014). Chaos synchronization of the discrete fractional logistic map. Signal Process., 102, 96–99.
Wu G.C., Baleanu D., Zeng S.D., Deng Z.G. (2015). Discrete fractional diffusion equation. Nonlinear Dyn., 80 (1–2), 281–286.
Diaz J.B., Olser T.J. (1974). Differences of Fractional Order, Math. Comput., 28, 185-202.
Miller K.S., Ross B. (1989) Fractional difference calculus, in Proceedings of the International Symposium on Univalent Functions, Fractional Calculus, and Their Applications, Nihon University, Koriyama, Japan, 1989, 139–152.
Anastassiou G.A. Discrete fractional calculus and inequalities, http://arxiv.org/abs/0911.3370v1.
Gray H.L., Zhang N.F. (1988). On a new definition of the fractional difference, Math. Comput., 50:182, 513–529.
Hirota R. (2000). Lectures on Difference Equations, Science-sha, Tokyo, Japan.
Nagai A. (2003). Discrete Mittag-Leffler function and its applications, new developments in the research of integrable systems: continuous, discrete, ultra-discrete, RIMS Kokyuroku, 1302, 1–20.
Atici F.M., Eloe P.W. (2009). Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equat., Special Edition I, 2009, 1-12.
Anastassiou G.A. (2010). Nabla discrete fractional calculus and nabla inequalities, Math. Comput. Model, 51, 562–571.
Al-Salam W.A. (1997). Some fractional q-integrals and q-derivative, Proc. Edinb. Math. Soc., 15:2, 135-140.
Agarwal R.P. (1969). Certain fractional q-integral and q-derivatives, Proc. Cambridge Philos. Soc., 66, 365-370.
Čermák J., Nechvatál L., (2010). On q,h - analogue of fractional calculus. J. Nonlinear Math. Phy., 17:1, 51-68.
Čermák J., Kisela T., Nechvatál L. (2011). Discrete Mittag-Leffler Functions in Linear Fractional Difference Equations. Abstr. Appl. Anal., Article ID 565067, 21 pages.
Brikshavana T., Sitthiwirattham T. (2017). On fractional Hahn calculus with the delta operators. Adv. Differ. Equ., 2017:354.
Patanarapeelert, N., Sitthiwirattham, T. (2019). On Fractional Symmetric Hahn Calculus Mathematics, 7, 873.
Soontraranon, J., Sitthiwirattham, T. (2020). On Fractional (p,q) - Calculus. Adv. Differ. Equ., 2020:35.