Quantum calculus (Calculus without limit) with the filling of the missing spaces of utilization Thanin Sitthiwirattham

Main Article Content

Thanin Sitthiwirattham


This article introduces a concept of quantum calculus that is different from previous well-know calculus. By introducing and showing the relationship between the derivative, the h-difference operator,  the q-difference operator and the Hahn difference operator.


Download data is not yet available.

Article Details

How to Cite
Sitthiwirattham, T. (2020). Quantum calculus (Calculus without limit) with the filling of the missing spaces of utilization: Thanin Sitthiwirattham. Journal of Science Innovation for Sustainable Development, 2(1), 1–9. Retrieved from https://ph01.tci-thaijo.org/index.php/JSISD/article/view/240373
Invited Paper


Adams, C.R. (1929). On the linear ordinary -difference equation. Amer. Math. Ser. II, 30, 195–205.

Agarwal, R.P. (1969). Certain fractional q-integral and q-derivatives. Proc. Cambridge Philos. Soc., 66, 365–370.

Aldwoah, K.A. (2009). Generalized Time Scales and Associated Difference Equations. (Ph.D. thesis), Cairo University.

Aldwoah, K.A., Hamza, A.E. (2011). Difference time scales. Int. J. Math. Stat., 9(A11), 106–125.

Almeida, R., Torres, D.F.M. (2011). Nondifferentiable variational principles in terms of a quantum operator. Math. Methods Appl. Sci., 34(18), 2231–2241.

Álvarez-Nodarse, R. (2006). On characterizations of classical polynomials. J. Comput. Appl. Math., 196(1), 320–337.

Al-Salam, W.A. (1966). Some fractional q-integrals and q-derivative. Proc. Edinb. Math. Soc., 15(2), 135–140.

Boole, G. (1860). A Treatise on The Calculus of Difference Equations. Cambridge.

Brikshavana, T., Sitthiwirattham, T. (2017). On fractional Hahn calculus with the delta operators. Adv. Differ. Equ., 2017:354.

Carmichael, R.D. (1912). The general theory of linear -difference equations. Amer. J. Math., 34, 147–168.

Cheng, H. (1994). Canonical Quantization of Yang-Mills Theories, Perspectives in mathematical physics. International press.

Cresson, J., Frederico, G.S.F., Torres, D.F.M. (2009). Constants of motion for nondifferentiable quantum variational problems. Topol. Methods Nonlinear Anal., 33(2), 217–231.

Dobrogowska, A., Odzijewicz, A. (2006). Second order -difference equations solvable by factorization method. J. Comput. Appl. Math., 193(1), 319–346.

Euler, L. (1755). Institutiones calculi differentialis. Academiae Imperiales Scientiarum Petropolitanae.

Ferreira, R.A.C., Torres, D.F.M. (2011). Fractional h-difference equations arising from the calculus of variations. Applicable Analysis and Discrete Mathematics, 5(1), 110–121.

Feynman, R.P., Hibbs, A.R. (2010). Quantum Mechanics and Path Integrals. Dover, Mineola, NY: Emended Edition.

Fock, V. (1935). Zur Theorie des Wasserstoffatoms. Zeitschrift fur Physik., 98, 145–154.

Hahn, W. (1949). Über orthogonal polynome, die h-differenzengleichungen genügen. Math. Nachr., 2, 4–34.

Hamza, A.E., Sarhan, A.M., Shehata, E.M, Aldwoah, K.A. (2015). A general quantum difference calculus. Adv. Differ. Equ., 2015:182.

Jackson, H.F. (1910). -Difference equations. Amer. J. Math., 32, 305–314.

Jordan, C. (1965). The Calculus of Finites Differences. American Mathematical Society.

Lavagno, A., Swamy, P.N. (2002). q-deformed structures and nonextensive statistics: a comparative study. Phys. A., 305(1-2), 310–315.

Markoff, A.A. (1904). Differenzenrechnung. Leipzig.

Mason, T.E. (1915). On properties of the solution of linear -difference equations with entire function coefficients. Amer. J. Math., 37, 439–444.

Miller, K.S., Ross, B. (1989). Fractional difference calculus, in Proceedings of the International Symposium on Univalent Functions, Fractional Calculus, and Their Applications, Nihon University, Koriyama, Japan, 139–152.

Milne-Thomson, L.M. (1951). The Calculus of Finite Differences. London: Macmillan and Co., Ltd.

Nörlund, N.E. (1924). Differenzenrechnung. Berlin.

Page, D.N. (1993). Information in black hole radiation. Phys. Rev. Lett., 71(23), 3743–3746.

Patanarapeelert, N., Sitthiwirattham, T. (2019). On Fractional Symmetric Hahn Calculus Mathematics. 7, 873.

Petronilho, J. (2007). Generic formulas for the values at the singular points of some special monic classical Hq,ω-orthogonal polynomials. J. Comput. Appl. Math., 205(1), 314–324.

Raychev, P.P., Roussev, R.P., Smirnov, Yu.F. (1990). The quantum algebra SUq (2) and rotational spectra of deformed nuclei. J. Phys. G., 16,137–141.

Soontraranon, J., Sitthiwirattham, T. (2020). On Fractional (p,q)-Calculus. Adv. Differ. Equ., 2020:35.

Stirling, J. (1730). Methodus Differentialis. London.

Taylor, B. (1717). Methods Incrementorum. London.

Trjitzinsky, W.J. (1993). Analytic theory of linear -difference equations. Acta Mathematica, 61(1), 1–38.

Whittaker, E.T., Ronbison, G. (1924). Calculus of Observations. London.

Youm, D. (2000). -deformed conformal quantum mechanics. Phys. Rev. D., 62:095009, 5 pages.