แคลคูลัสควอนตัม (แคลคูลัสไม่มีลิมิต) กับการเติมช่องว่างที่หายไปของการใช้ประโยชน์ ธานินทร์ สิทธิวิรัชธรรม

Main Article Content

ธานินทร์ สิทธิวิรัชธรรม

บทคัดย่อ

บทความนี้แนะนำแนวคิดของแคลคูลัสควอนตัมซึ่งเป็นแคลคูลัสที่แตกต่างไปจากแคลคูลัสที่เคยรู้จัก โดยได้แนะนำและแสดงความสัมพันธ์ระหว่างอนุพันธ์กับตัวดำเนินการเชิงผลต่าง h  ตัวดำเนินการเชิงผลต่าง q  และตัวดำเนินการเชิงผลต่างฮาห์น

Article Details

บท
บทความรับเชิญ

References

Adams, C.R. (1929). On the linear ordinary -difference equation. Amer. Math. Ser. II, 30, 195–205.

Agarwal, R.P. (1969). Certain fractional q-integral and q-derivatives. Proc. Cambridge Philos. Soc., 66, 365–370.

Aldwoah, K.A. (2009). Generalized Time Scales and Associated Difference Equations. (Ph.D. thesis), Cairo University.

Aldwoah, K.A., Hamza, A.E. (2011). Difference time scales. Int. J. Math. Stat., 9(A11), 106–125.

Almeida, R., Torres, D.F.M. (2011). Nondifferentiable variational principles in terms of a quantum operator. Math. Methods Appl. Sci., 34(18), 2231–2241.

Álvarez-Nodarse, R. (2006). On characterizations of classical polynomials. J. Comput. Appl. Math., 196(1), 320–337.

Al-Salam, W.A. (1966). Some fractional q-integrals and q-derivative. Proc. Edinb. Math. Soc., 15(2), 135–140.

Boole, G. (1860). A Treatise on The Calculus of Difference Equations. Cambridge.

Brikshavana, T., Sitthiwirattham, T. (2017). On fractional Hahn calculus with the delta operators. Adv. Differ. Equ., 2017:354.

Carmichael, R.D. (1912). The general theory of linear -difference equations. Amer. J. Math., 34, 147–168.

Cheng, H. (1994). Canonical Quantization of Yang-Mills Theories, Perspectives in mathematical physics. International press.

Cresson, J., Frederico, G.S.F., Torres, D.F.M. (2009). Constants of motion for nondifferentiable quantum variational problems. Topol. Methods Nonlinear Anal., 33(2), 217–231.

Dobrogowska, A., Odzijewicz, A. (2006). Second order -difference equations solvable by factorization method. J. Comput. Appl. Math., 193(1), 319–346.

Euler, L. (1755). Institutiones calculi differentialis. Academiae Imperiales Scientiarum Petropolitanae.

Ferreira, R.A.C., Torres, D.F.M. (2011). Fractional h-difference equations arising from the calculus of variations. Applicable Analysis and Discrete Mathematics, 5(1), 110–121.

Feynman, R.P., Hibbs, A.R. (2010). Quantum Mechanics and Path Integrals. Dover, Mineola, NY: Emended Edition.

Fock, V. (1935). Zur Theorie des Wasserstoffatoms. Zeitschrift fur Physik., 98, 145–154.

Hahn, W. (1949). Über orthogonal polynome, die h-differenzengleichungen genügen. Math. Nachr., 2, 4–34.

Hamza, A.E., Sarhan, A.M., Shehata, E.M, Aldwoah, K.A. (2015). A general quantum difference calculus. Adv. Differ. Equ., 2015:182.

Jackson, H.F. (1910). -Difference equations. Amer. J. Math., 32, 305–314.

Jordan, C. (1965). The Calculus of Finites Differences. American Mathematical Society.

Lavagno, A., Swamy, P.N. (2002). q-deformed structures and nonextensive statistics: a comparative study. Phys. A., 305(1-2), 310–315.

Markoff, A.A. (1904). Differenzenrechnung. Leipzig.

Mason, T.E. (1915). On properties of the solution of linear -difference equations with entire function coefficients. Amer. J. Math., 37, 439–444.

Miller, K.S., Ross, B. (1989). Fractional difference calculus, in Proceedings of the International Symposium on Univalent Functions, Fractional Calculus, and Their Applications, Nihon University, Koriyama, Japan, 139–152.

Milne-Thomson, L.M. (1951). The Calculus of Finite Differences. London: Macmillan and Co., Ltd.

Nörlund, N.E. (1924). Differenzenrechnung. Berlin.

Page, D.N. (1993). Information in black hole radiation. Phys. Rev. Lett., 71(23), 3743–3746.

Patanarapeelert, N., Sitthiwirattham, T. (2019). On Fractional Symmetric Hahn Calculus Mathematics. 7, 873.

Petronilho, J. (2007). Generic formulas for the values at the singular points of some special monic classical Hq,ω-orthogonal polynomials. J. Comput. Appl. Math., 205(1), 314–324.

Raychev, P.P., Roussev, R.P., Smirnov, Yu.F. (1990). The quantum algebra SUq (2) and rotational spectra of deformed nuclei. J. Phys. G., 16,137–141.

Soontraranon, J., Sitthiwirattham, T. (2020). On Fractional (p,q)-Calculus. Adv. Differ. Equ., 2020:35.

Stirling, J. (1730). Methodus Differentialis. London.

Taylor, B. (1717). Methods Incrementorum. London.

Trjitzinsky, W.J. (1993). Analytic theory of linear -difference equations. Acta Mathematica, 61(1), 1–38.

Whittaker, E.T., Ronbison, G. (1924). Calculus of Observations. London.

Youm, D. (2000). -deformed conformal quantum mechanics. Phys. Rev. D., 62:095009, 5 pages.