เพกาซัส: ระบบแนะนำเกมรายบุคคล

Main Article Content

จุฑารัตน์ รุ่งวารินทร์
จิติมนต์ อั่งสกุล
ธรา อั่งสกุล

บทคัดย่อ

ปัจจุบัน เกมเป็นสิ่งที่ได้รับความนิยมต่อบุคคลทุกเพศทุกวัย ส่งผลให้อุตสาหกรรมเกมเติบโตอย่างต่อเนื่องและเกมถูกพัฒนาขึ้นมาเป็นจำนวนมาก แต่อย่างไรก็ตาม เกมที่ถูกพัฒนาเหล่านั้นมีความคล้ายคลึงกันมาก ทำให้ผู้เล่นเกมตัดสินใจเลือกซื้อ
ได้ยาก บทความนี้จึงนำเสนอระบบแนะนำเกมที่เหมาะสมกับความชอบเฉพาะของผู้เล่นชื่อเพกาซัส เพกาซัสใช้การแนะนำโดยอ้างอิงเนื้อหาหรือวิเคราะห์จากประวัติของผู้เล่น โดยได้ทำการทดลองออกแบบมอดูลการแนะนำด้วย 2 วิธี ได้แก่ วิธีการหาค่าความคล้ายของโคโซน์ และวิธีการหาค่าน้ำหนักจากความถี่ของแท็กคำ ทั้งนี้เพื่อหาวิธีที่เหมาะสมที่สุดที่จะนำไปใช้ในระบบเพกาซัส ซึ่งการประเมินระบบทำโดยการเปรียบเทียบเกมที่ระบบแนะนำกับเกมที่ผู้เล่นเลือกเล่นจริง ผลการประเมินพบว่า การออกแบบมอดูลการแนะนำด้วยวิธีการคำนวณหาค่าน้ำหนักจากความถี่ของแท็กคำ มีค่าความถูกต้องสูงกว่าวิธีการหาค่าความคล้ายของโคโซน์

Article Details

บท
บทความวิจัย ด้านเทคโนโลยีสารสนเทศ

References

Newzoo. (2017, April 20). Mobile revenues on the rise as Chinese giants continue to grow [Online]. Available: https://newzoo.com/ insights/articles/the-global-games-marketwill- reach-108-9-billion-in-2017-with-mobiletaking- 42/

Statista. (2020, July). Age breakdown of video game players in the United States in 2020 [Online]. Available: https://www.statista. com/statistics/189582/age-of-us-video-gameplayers- since-2010/

IEEE. (2015). Historic Gaming Timeline [Online]. Available: https://www.secured-app.com/ieee/ historic-gaming-timeline/

Thailand E-Sport Federation. (2019). History of Thailand E-Sport Federation [Online] (in Thai). Available: http://www.tesf.or.th/history-ofthailand- e-sport-federation/

B. Schwartz (2007). Paradox of Choice WHY MORE IS LESS [Online]. Available From: http:// wp.vcu.edu/univ200choice/wp-content/ uploads/sites/5337/2015/01/The-Paradox-of- Choice-Barry-Schwartz.pdf

Y. Lu, S. Yu, T. Chang, and J. Y. Hsu, “A Content-Based Method to Enhance Tag Recommendation,” in Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence, 2009, pp. 2064–2069.

S. K. Maity, A. Panigrahi, S. Ghosh, A. Banerjee, P. Goyal, and A. Mukherjee, “DeepTagRec: A content-cum-user based tag recommendation framework for stack overflow,” in Proceedings of 41st European Conference on IR Research (ECIR), 2019, pp. 125–131.

I. Cantador, A. Bellogín, and D. Bellogín, “Content-based recommendation in social tagging systems,” in Proceedings of the 4th ACM conference on Recommender systems, 2010, pp. 237–240.

J. Subercaze, C. Gravier, and F. Laforest, “Real- Time, Scalable, Content-based Twitter users recommendation,” Journal of Web Intelligence, vol. 14, no. 1, pp. 17–29, 2016.

D. Wang, Y. Liang, D. Xu, X. Feng, and R. Guan, “A content-based recommender system for computer science publications,” Journal of Knowledge-Based Systems, vol. 157, pp. 1–9. 2018.

T. Achakulvisut, D. E. Acuna, T. Ruangrong, and K. Kording, “Science concierge: A fast contentbased recommendation system for scientific publications,” Journal of PLoSS ONE, vol. 11, no. 7, pp. 1–11, 2016.

S. Philip, P. B. Shola, and A. O. John, “Application of content-based approach in research paper recommendation system for a digital library,” International Journal of Advanced Computer Science and Applications, vol. 5, no. 10, pp. 37–40, 2014.

R. Meteren and M. V. Someren, “Using contentbased filtering for recommendation,” in Proceedings of the Machine Learning in the New Information Age, 2000, pp. 47–56

T. Rutkowski, J. Romanowski, P. Woldan, P. Staszewski, R. Nielek, and L. Rutkowski, “A content-based recommendation system using neuro-fuzzy approach,” presented at the 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Rio de Janeiro, Brazil, 8-13 July, 2018

S. Debnath, N. Ganguly, and P. Mitra, “Feature weighting in content based recommendation system using social network analysis,” in Proceedings of the 17th International Conference on World Wide Web, 2008, pp. 1041–1042.

C. H. Yang, Z. R. Huang, C. S. Lin, and T. H. Tsai, “Text mining on player personality for game recommendation,” in Proceeding of the 4th Multidisciplinary International Social Networks Conference, 2017, pp. 1–6.

M. Meidl, S Lytinen, and K. Raison, “Using game reviews to recommend games,” in Proceedings of AAAI AIIDE, 2014, pp. 24–29.

M.S. Anwar, T. Shahzad, Z. Sattar, R. Khan and M. Majid, “A game recommender system using collaborative filtering (GAMBIT),” in Proceedings 14th International Bhurban Conference on Applied Sciences & Technology (IBCAST), 2017, pp. 328–332.

Z. Tao, M. Cheung, J. She, and R. Lam, “Item recommendation using collaborative filtering in mobile social games: A case study,” in Proceeding IEEE 4th International Conference on Big Data and Cloud Computing, 2014, pp. 293–297.

P. Pathak, K. Gupta, and J. McAuley, “Generating and personalizing bundle recommendations on steam,” in Proceeding SIGIR '17 Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2017, pp. 1073–1076.

P. Bertens, A. Guitart, P. P. Chen, and A. Perianez, “A Machine-learning item recommendation system for video games,” in Proceedings of IEEE Conference on Computational Intelligence and Games (CIG), 2018, pp. 1–4.

G. Cheuque, J. Guzman, and D. Parra, “Recommender systems for online video game platforms: The case of STEAM,” in Proceedings of World Wide Web Conference, 2019, pp. 763–771.

J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–297.

J. Nielsen and T. K. Landauer, “A mathematical model of the finding of usability problems,” in Proceedings of ACM INTERCHI'93 Conference, 1993, pp. 206–213.

G. Salton and M. J. McGill, Introduction to modern information retrieval. Auckland: McGraw-Hill, 1983, pp. 201–215.