Analysis of The Population And Areas Affected by Flooding Using Open Data

Authors

  • wilawan Prasomsup Survey Engineering and Geomatics, Faculty of Engineering and Architecture, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand
  • Tinn Thirakultomorn Rail System Institute of RMUTI, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand 30000
  • Athiwat Phinyoyang Geoinformatics, School of Science, Suranaree University of Technology, Nakhon Ratchasima 30000

Keywords:

Flood, Open-Source Software, Sentinel-1A, Land Scan

Abstract

The recent floods in Thailand have caused damage to people and the economy. The government will have remedial measures to help victims in various areas by surveying the number of impacts that occur to the victims. However, this process will create gaps between flood impact surveying. Therefore, the researcher developed flood areas assessment using open data and open-source software to assess flooded areas from Sentinel-1A data compared with flood data from the Geo-Informatics and Space Technology Development Agency (GISTDA). And analyze the number of people affected by flooding in the area. As a result, it was found that the affected area of flooding was 387,471.56 rai. While the error value from the flooded area of the GISTDA was 6.83%, the accuracy was 93.17%, and the affected population of the sample area was 69,644. These results complement the disaster-affected area (flood) announcement but can specify the extent of the quantitative and spatial flooding. It can be used as crucial information for declaring disaster-affected areas (floods), considering payment of compensation, and planning to manage floods to be more effective in the future.

Downloads

Download data is not yet available.

References

สถาบันสารสนเทศทรัพยากรน้ำ (องค์การมหาชน). (2565). บันทึกเหตุการณ์มหาอุทกภัยปี 2554. สืบค้นจากhttp://tiwrmdev.hii.or.th/current/flood54.html.

TNN Online. (2565). 10 ข่าวเด่นแห่งปี ลำดับที่ 1/10 บันทึกเหตุการณ์ "น้ำท่วมใหญ่" 2564 หวนซ้ำรอยในรอบ 10 ปี. สืบค้นจาก https://www.tnnthailand.com/news/local/99775/

ผู้จัดการออนไลน์. (2564, 6 ตุลาคม). มท.ให้ค่าซ่อมบ้านหลังละเกือบ 5 หมื่น ทุ่มงบช่วยน้ำท่วมทุกครัวเรือน. สืบค้นจาก https://mgronline.com/specialscoop/detail/9640000098851.

European Space Agency (ESA). (2022). Copernicus Open Access Hub. Retrieved from https://scihub.copernicus.eu/dhus/#/home.

Geo-Informatics and Space Technology Development Agency (GISTDA). (2022). Thai flood Monitoring System. Retrieved from https://flood.gistda.or.th.

Oak Ridge National Laboratory (ORNL). (2022). LandScan Datasets. Retrieved from https://landscan.ornl.gov/landscan-datasets.

Rubel, O., Lukin, V., Rubel, A., and Egiazarian, K. Prediction of Lee filter performance for Sentinel-1 SAR images. In Proceedings of the Electronic Imaging 2020, Burlingame, CA, USA, 26–30 January 2020; pp. 371-1 – 371-7.

Environmental Systems Research Institute (ESRI). (2022). Reclassify (Spatial Analyst). Retrieved from https://pro.arcgis.com/en/pro-app/2.8/tool-reference/spatial-analyst/reclassify.htm.

Cole, T. J., and Altman, D. G. (2017). Statistics notes: What is a percentage difference?. British Medical Journal, 358; j3663.

สำนักงานป้องกันและบรรเทาสาธารณภัยจังหวัดชัยภูมิ. (2564). ประกาศเขตพื้นที่ประสบภัยปีงบประมาณ พ.ศ.2564. สืบค้นจาก http://cpm.disaster.go.th/cmsdetail.cyp-6.110/52449/inner_2775/5252.1/ประกาศกองอำนวยการป้องกันและบรรเทาสาธารณภัยจังหวัดชัยภูมิ++เรื่อง+ประกาศเขตพื้นที่ประสบสาธารณภัย++(อุทกภัย)+จำนวน+16+อำเภอ+.

Published

2022-04-30

Issue

Section

Research Articles